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a b s t r a c t 

We propose a new accurate regularized Tucker decomposition (ARTD) method for image 

restoration (IR), which considers global low-rankness and local similarity of intrinsic im- 

age characteristics. Specifically, global low-rankness is represented by a sparse Tucker core 

tensor, whereas the local similarity is captured using nonnegative factor matrices and man- 

ifold regularization terms. Sparse nonnegative Tucker decomposition (SNTD) and graph 

nonnegative Tucker decomposition (GNTD) can be considered a special case of ARTD. We 

propose and implement an effective Alternating Proximal Gradient (APG) based algorithm 

to solve the ARTD model and deduce the closed-form updating rules. Notably, ARTD does 

not need to tune the Tucker rank and provides an initialization strategy and a first-order 

feedback control rule to accelerate its convergence. Experiments on real IR problems show 

that our method outperforms some existing state-of-the-art methods. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Image restoration (IR), as a fundamental problem in image processing, aims to reconstruct the original image from its 

corrupted observation and is still facing many challenges. On the one hand, the image has triple channels and is always

globally correlated. Hence, tensor completion (TC) [1,2] is naturally one of the most critical topics in IR. However, a tensor

is more challenging to analyze than a matrix due to the complicated nature of higher-order arrays. For example, matrix 

nuclear-norm minimization and tensor rank minimization suffers from computation burden [3,4] and cannot work well for 

images with high-level corruption [5] . Low-rank tensor factorization is essentially not unique and determines the tensor 

rank is NP-hard [6] . So, recovering the missing entries from a significantly under-sampled tensor has presented various 

theoretical and computational challenges. 

On the other hand, IR is a typical ill-posed inverse problem. Fortunately, it can be solved using low-rank tensor approx-

imation (LRTA) from the perspective of Bayesian [7] . To our knowledge, state-of-the-art LRTA-based IR methods [8,9] are 

model-based optimization schemes, where the objective function is based on the low-rank approximation 

ˆ X , image noise- 

less degradation process X 

0 = � � X and the given image priors R (X ) . Mathematically, the widely used MAP (maximum a

posterior) model can generally be expressed as 

minimize 
X 

L ( ˆ X , X 

0 ) + λR (X ) , (1) 
� ARTD for IR 
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Table 1 

A summary of existing TC methods utilizing different priors. 

TC methods Types of the priors Forms 

Low-rankness Sparsity Smoothness 

HaLRTC [1] � Rank minimization 

LRTC-TV [13] � � Rank minimization 

t-SVD [4] � Rank minimization 

FATC [10] � Tensor Train 

TT-TV [9] � � Tensor Train 

SMF [14] � � Decomposition 

LRTD-TV [15] � � Decomposition 

SCP [5] � � Decomposition 

BGCP [16] � Decomposition 

STDC [12] � � Decomposition 

KBR [17] � � Decomposition 

LR-SETD [18] � � � Decomposition 

SNTD [19] � � Decomposition 

GNTD [20] � � Decomposition 

ARTD � � � Decomposition 

 

 

 

 

 

 

 

 

 

 

 

where L (·, ·) is the loss function to measure the similarity between output image ˆ X and corrupt input image X 

0 , and R (·)
is the regularization term (or prior knowledge). 

In reality, an image collected from the real-world has intrinsic characteristics, i.e., global correlation along the spectrum 

(GCS) [1,10,11] , local similarity with the adjacent pixels and across space (LSS) [5,9,12] . Consequently, the core of IR is to

rationally extract prior structures to model such intrinsic image characteristics and then fully utilize such knowledge to 

rectify the configuration of the clean image in a low-rank approximation manner. Below, we review some commonly utilized 

prior structures in the TC problem and then briefly discuss the Tucker-based IR techniques applied to color images. The 

summation of these priors used in some representative TC methods is shown in Table 1 . 

1.1. Related work 

Given GCS information, the low-rankness and sparsity knowledge are the commonly utilized prior structures in the TC 

problems. For example, a rank-minimization term was proposed for TC in [1] , which directly extended the rank of the ma-

trix to higher order by simply summing up ranks (or its relaxations) along all tensor modes. Furthermore, tensor trains 

with multi-rank are also applicable, even suffering huge computation [21] and the sensitivity of the obtained solution to its 

random initialization [10] ; the tensor tubal rank and its convex surrogate tensor nuclear norm (TNN) [4] is also researched

when the tensor is 3-rd order. Another way to tackle TC is based on the tensor sparsity with tensor decomposition forms.

Kronecker-basis-representation (KBR) measure [11] , interpreted as a regularization for the number of rank-1 Kronecker bases, 

was proposed to encode the inherent global spectral correlations in IR. And a sparsity-inducing prior combined with CAN- 

DECOMP/ PARAFAC (CP) decomposition model was presented in [16] to solve the rank determination using a hierarchical 

Bayesian probabilistic framework. 

To capture LSS knowledge, the total variation (TV) terms have been integrated into the low-rank term in [9,13–15] to

enhance model performance. And the smoothness constraints combined with low-rank CP decomposition were studied in 

[5] for image processing. Manifold learning, a specified Laplacian graph is constructed to encode the geometrical informa- 

tion of local similarity on a low-dimensional manifold [22] , was also proposed to capture the relationships among data in

the with-in and with-cross directions [23] for the tensor completion problem. Furthermore, the deep image priors (DIP) 

[24] method, a newly smoothness priors, was recently proposed by designing a deep convolutional neural network with a 

rectified linear unit (ReLU) activation function in [25] to encode the intrinsic image characteristics and achieve better per- 

formance in IR. This deep learning method, however, needs training image pairs, and the image priors cannot be interpreted 

explicitly. 

Based on the GCS and LSS prior structures, many Tucker-based IR problem methods exist. Chen et al. proposed a method

called simultaneous tensor decomposition and completion (STDC) that exploits rank minimization prior and joint-manifold 

prior by employing the Tucker decomposition to obtain the low-rank approximation of the corrupt input image [12] . Al-

though the proposal reconstructs the missing entries and simultaneously captures the underlying model structure without 

predefined ranks, this rank-summation term performs poorly in high-level corruption. Guided by nonnegative matrix factor- 

ization (NMF), Kim et al. proposed a nonnegative Tucker decomposition (NTD) for face image reconstruction [26] . Further- 

more, Xu proposed a sparse nonnegative Tucker decomposition (SNTD) model for tensor completion [19] . However, these 

nonnegative Tucker decompositions have yet to utilize the prior knowledge entirely and should predefine the low Tucker 

rank. To faithfully deliver the GCS underlying image tensor, Xie et al. proposed a KBR tensor sparsity measure to cope with

the multispectral image denoising problem [17] . Pan et al. proposed a unified low-rank and sparse enhanced Tucker decom- 

position (LR-SETD) model for image completion [18] . However, it does not fully utilize the LSS to reconstruct the corrupt

image tensor. Thus, the IR performance still has much room for further improvement. 
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1.2. Motivations and contributions 

The challenges of IR remain in capturing the images’ prior knowledge further to improve the performance in terms 

of efficiency and accuracy. This paper proposes a new accurate, regularized Tucker decomposition (ARTD) method for IR. 

Specifically, a sparse Tucker core tensor is used to characterize the GCS knowledge of the tensor image. Compared with 

KBR sparsity measure [11] , we relax orthogonal constraint and use the sparsity of full-size core tensor to encode the low-

rankness. Besides this, inspired by the outstanding achievement of convolution neural network with ReLU activation function 

in image processing, the nonnegative constraints of factor matrices are added in the optimization problem (1) . The benefits

of adding the nonnegative constraints are twofold: first, it helps to extract image features [27] , and second, it further ensures

the sparsity of the Tucker core tensor [28] . Furthermore, we provide a specified manifold regularization to capture the LSS

knowledge to encode the image’s geometrical similarity [29] on a low-dimensional manifold. Our contributions to this paper 

are summarised as follows. 

1) A new prior structure for IR is proposed. We relax the orthogonal to be nonnegative and constrain manifold regulariza- 

tion of factor matrices in KBR sparsity measure to enhance the IR performance. To the best of our knowledge, we adopt

these priors, which can capture the image’s intrinsic characteristics in the spatial and spectral directions simultaneously. 

2) We propose and implement an effective Alternating Proximal Gradient (APG) based algorithm for solving the ARTD model 

and deduce the closed-form updating rules for each involved parameter. Specifically, a first-order feedback control rule 

is established to speed up the algorithm’s efficiency. Furthermore, our method can degenerate into graph nonnegative 

Tucker decomposition (GNTD) [20] and SNTD [19] , which are well-studied. 

3) The experiments on benchmark data with different missing scenarios demonstrate that the proposed method achieves 

state-of-the-art performance on IR. 

The rest of this paper is structured as follows. Section 2 presents some basic tensor notations. The proposed model 

and the APG-based algorithm with guaranteed convergence and efficient computation are shown in Section 3 . Experimental 

results are demonstrated in Section 4 . Finally, Section 5 concludes this paper. 

2. Notations 

Throughout this paper, we use calligraphy font for tensors, such as X ∈ R 

I 1 ×I 2 ×···×I N , whose element is denoted as x i 1 i 2 , ··· ,i n . 
The bold uppercase letters for matrices, such as U ∈ R 

I 1 ×I 2 , bold lowercase letters for vectors, such as a ∈ R 

I 1 , and Greek

alphabet letters for scalars, such as α, β . 

The Frobenius norm of a tensor is defined as 

‖ 

X ‖ F = 

√ √ √ √ 

I 1 ∑ 

i 1 =1 

· · ·
I N ∑ 

i n =1 

x 2 
i 1 ... i n 

. 

We denote the mode- n unfolding (i.e., matricization) of an N-order tensor X by X (n ) ∈ R 

I n ×
∏ 

j � = n I j . 

Given a tensor X ∈ R 

I 1 ×I 2 ×···×I N , Tucker decomposition can be denoted as a core tensor G ∈ R 

r 1 ×r 2 ×···×r N multiplying a 

matrix U n ∈ R 

I n ×r n along each mode n , i.e., X = G ×1 U 1 ×2 · · · ×N U N . Based on the matrix Kronecker product �, the Tucker

decomposition can also be represented by 

X (n ) = U n G (n ) V 

T 
n 

where V n = ( U N � · · · � U n +1 � U n −1 � · · · � U 1 ) . Furthermore, it is not difficult to verify that vec (X ) = 

( U N � · · · � U n � · · · � U 1 ) vec ( G) = 

(
�

1 
n=N 

U n 

)
vec ( G) . 

Finally, for a given tensor X ∈ R 

I 1 ×I 2 ×···×I N and the observed index set �, we define X � is a projection that keeps the

entries of X in � while making others be zeros, i.e., 

X � := 

{
x i 1 i 2 ... i n , if ( i 1 , i 2 , . . . , i n ) ∈ �
0 , otherwise. 

3. Accurate regularized Tucker decomposition 

3.1. Manifold regularization 

We first introduce the general manifold regularization term for the IR problem to reconstruct the clean image from its 

corrupted observations. Given an undirected local p-connected graph with a similarity matrix W ∈ R 

N×N for data X ∈ R 

I×N 

representation, where 0 ≤ w i j ≤ 1 , i, j = 1 , . . . , N represents the probability that data point x i , x j are close in the geometry

space [30] , we construct a manifold regularization term (2) to capture an optimal low-dimensional representation U for 
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given data X . 

N ∑ 

i =1 

N ∑ 

j=1 

w i j 

∥∥u i − u j 

∥∥2 

2 
= tr 

(
U 

T LU 

)
, L = D − W (2) 

where u i is the column vector of U 

T and D ∈ R 

N×N is a diagonal matrix with diagonal elements d ii = 

∑ N 
j=1 w i j , i = 1 , . . . , N.

Note that L is a Laplacian matrix designed by some prior knowledge, which enforces the smoothness of the low-dimensional

feature U and captures the local similarity in tensors [23] . 

Since the image resides in low-dimensional submanifolds, the manifold regularization can be used to learn the LSS infor- 

mation [12] . More specifically, the proposal ARTD uses the K-nearest neighbor (KNN) method to select p nearest neighbors 

for each unfolding image tensor and then construct the similarity matrix W using the Euclidean measure to represent the 

neighbor connections. 

The most important parts of manifold regularization are two folds: the Laplacian matrix construction and similarity 

matrix calculation. In this paper, we apply different strategies to do that [31] . On the one hand, we suppose that the intrinsic

manifold is located in the convex envelope of the previously given manifold Laplacian matrices { L 1 , . . . , L K } , such that, the 

ensemble graph Laplacians is denoted as a linear combination of K candidate Laplacians: 

L = 

K ∑ 

k =1 

τk L k , s.t. 

K ∑ 

k =1 

τk = 1 , τk ≥ 0 , (3) 

where τk is the combined weight of k -th graph Laplacian and the constraint τk ≥ 0 is used to avoid negative contribution. 

On the other hand, we use kernel weighting to define the similarity matrix. For each data point x i belongs to unfolding

matrix X , if nodes i and j are connected, the kernel weight is defined as (4) 

w i j = e 
−
(‖ 

x i −x j ‖ 

2 
)
/σ 2 

, (4) 

where σ 2 denotes the divergence, and we set σ 2 = 1 in our experiments. 

3.2. ARTD model 

This paper proposes a new prior structure for the IR problem. A nonnegative and manifold regularized factor matrix com- 

bined with a sparse Tucker core tensor is used to capture the image’s intrinsic characteristics in a low-rank approximation 

manner. So, we aim to solve the following optimization problem: 

Let X 

0 ∈ R 

I 1 ×I 2 ×···×I N be a corrupt image tensor (N = 3, and we consider a more general case here) and � be the observed

index set corresponding to the entries of clean image tensor X , the ARTD model is 

minimize 
G;{ U n };X 

F ( G, { U n } , X ) � 

1 
2 ‖ 

X − G ×1 U 1 ×2 · · · ×N U N ‖ 

2 
F + 

α
2 

(∑ N 
n =1 tr (U 

T 
n L n U n ) 

)
+ β‖G‖ 1 , 

s.t. U n ∈ R + , X � = X 

0 
�, 

(5) 

where α and β are positive penalty parameters, and L n represents the different ensemble Laplacian regularization for image 

mode- n unfolding matrix. Note that when β = 0 and the Tucker core G are nonnegative, the ARTD model is transformed

into the GNTD model; if α = 0 is further required, the ARTD becomes the NTD model. When α = 0 and the Tucker core G
is required to be nonnegative, the ARTD model is degraded into the SNTD model. 

Remark: Motivated by [17] , the low-rankness of the Tucker decomposition implies that many elements of the core tensor 

equal zero; it is, therefore, rational to impose sparsity on the Tucker core tensor. To better understand tensor decomposition, 

we can utilize nonnegative components. This approach can yield a unique additive representation and extract image features 

through various parts [19,32] . Note that the non-negativity constraints on the factor matrix ensure stronger correlations 

across image data along some channels and provide better compression than unconstrained variants [33] . Then the elements 

in the core tensor along this mode tend to zeroes, which ensures the Tucker core tensor has more sparsity. 

3.3. Algorithm for ARTD model 

Since the ARTD Model (5) is generally nonconvex but convex in each block of variables, we use the block coordinate

descent scheme and apply the alternating proximal gradient [34] , an efficient method for solving multi-convex optimization 

problems to solve (5) . 

Updating U We unfold the objective function (5) in mode- n for given tensor X , then the latent factor matrices optimiza-

tion subproblems are given as (6) . 

minimize 
U n ≥0 

� (U n ) = 

1 
2 

∥∥X (n ) − U n G (n ) V 

T 
n 

∥∥2 

F 
+ 

α
2 

tr 
(
U 

T 
n L n U n 

)
, 

V n = ( U N � · · · � U n +1 � U n −1 � · · · � U 1 ) , 
(6) 

where L n = D n − W n represents the ensemble Laplacian matrix of the unfolding matrix X n . 
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Proposition 1. The objective function of subproblem (6) is differentiable and convex. Furthermore, the gradients ∇ U n � (U n ) are

both Lipschitz continuous with the Lipschitz constant 

L U n = 

∥∥G (n ) V 

T 
n VG 

T 
(n ) 

∥∥
2 

+ α‖ 

L n ‖ 2 . 

Proposition 1 1 is obvious, and the Lipschitz constant can be calculated by the Hessian matrix of � (U n ) , we omit the detail here. 

Based on the Proposition 1 , we use the prox-linear updating scheme to obtain the stationary point of the latent factor

matrices. 

ˆ U n = argmin 

U n ≥0 

	( U n , ˜ U n ) ≡
〈∇ U n � ( ̃  U n ) , U n − ˜ U n 

〉
+ 

L U n 
2 

‖ U n − ˜ U n ‖ 

2 
F , (7) 

where ˜ U n denotes the extrapolated point, and ∇ U n � (U n ) = U n G 

n 
V 

G 

n 
V 

T − X (n ) G 

n 
V 

T + αL n U n . To solve (7) , we consider the

Karush–Kuhn–Tucker (KKT) conditions as follows 

∇ U n 	( U n , ˜ U n ) ≥ 0 , U n ≥ 0 , and ∇ U n 	( U n , ˜ U n ) � U n = 0 , (8) 

where ∇ U n 	( U n , ̃  U n ) = ∇ U n � ( ̃
 U n ) + L U n (U n − ˜ U n ) and � is the Hadamard product. So, the latent factor matrix { U 

k 
n } is up-

dated by 

U n ← − P + 
(

˜ U n − 1 
L U n 

∇ U n � 
(

˜ U n 

))
, (9) 

where P + (U ) is the function that projects the negative entries of U into zeros and 

˜ U n is updated by 

˜ U 

k 
n = U 

k 
n + ω k 

(
U 

k 
n − U 

k −1 
n 

)
, for k ≥ 1 (10) 

with the update step size ω k 

ω k = 

t k −1 − 1 

t k 
, t k = 

1 + 

√ 

4(t k −1 ) 2 + 1 

2 

for k ≥ 1 and t 0 = 1 (11) 

Updating G We also use the proximal gradient method to update the core tensor G using the vectorization form 

minimize 
G 

1 
2 

∥∥vec (X ) −
(
�

1 
n=N U n 

)
vec (G) 

∥∥2 

F 
+ β‖ vec (G) ‖ 1 := f(G) + g(G) . (12) 

Proposition 2. The objective function of subproblem (12) is the sum of two convex functions, and the gradient ∇ G f (G) is Lipschitz

continuous with the Lipschitz constant L G = 

∥∥�
1 
n = N U 

� 
n U n 

∥∥
2 

= 

∏ N 
n =1 

∥∥U 

� 
n U n 

∥∥
2 
. 

Proof of Proposition 2.. It is straightforward to verify the convex and Lipschitz continuous properties. For the vectorization 

form, we have 

vec ( ∇ G f (G) ) = 

(
�

1 
n = N U 

T 
n U n 

)
vec (G) −

(
�

1 
n = N U 

T 
n 

)
vec (X ) . (13) 

Here, the Hessian matrix vec 
(∇ 

2 
G f (G) 

)
= �

1 
n = N U 

T 
n U n , which is positive semidefinite and assures the convexity of f (G) . For

any given G 1 and G 2 , we have 

‖ 

vec ( ∇ G f (G 1 ) ) − vec ( ∇ G f (G 2 ) ) ‖ F = 

∥∥�
1 
n = N U 

T 
n U n ( vec (G 1 ) − vec (G 2 ) ) 

∥∥
F 

≤
∥∥�

1 
n = N U 

T 
n U n 

∥∥
2 
‖ 

vec (G 1 ) − vec (G 2 ) ‖ F 

= 

∏ N 
n =1 

∥∥U 

T 
n U n 

∥∥
2 
‖ 

vec (G 1 ) − vec (G 2 ) ‖ F . 

(14) 

So, the Lipschitz constant of ∇ G f (G) is L G = 

∏ N 
n =1 

∥∥U 

T 
n U n 

∥∥
2 
. This completes the proof. �

Based on Proposition 2 , we denote the core tensor optimization function as (15) 

ˆ G = argmin 

G 

〈∇ G f ( ̃  G ) , G − ˜ G 
〉
+ 

L G 
2 

‖G − ˜ G ‖ 

2 
F + β‖G‖ 1 , (15) 

where ˜ G denotes the extrapolated point and ∇ G f (G) can be calculated by (16) using the properties of Kronecker product. 

∇ G f (G) = G ×1 U 

T 
1 U 1 ×2 · · · ×N U 

T 
N U N − X ×1 U 

T 
1 ×2 · · · ×N U 

T 
N . (16) 

So, we have the Tucker core tensor updating rule (17) by using the soft-thresholding operator S ζ (·) [19,35] 

ˆ G = T f,g 
L G 

(G) = S β
L G 

(
˜ G − 1 

L G 
∇ G f 

(
˜ G 
))

, (17) 

where ˜ G is updated by (18) with the update step size ω k (11) 

˜ G k = G k + ω k 

(
G k − G k −1 

)
, for k ≥ 1 . (18) 
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Updating scheme Suppose the current iterate is k -step, we update the core tensor G k by 

G k +1 = S β
L k G 

(
˜ G k − 1 

L k G 
∇ G f 

(
˜ G k 

))
, (19) 

and the latent factor matrices { U 

k 
n } using 

U 

k +1 
n = P + 

(
˜ U 

k 
n −

1 

L U k n 

∇ U n � 
(

˜ U 

k 
n 

))
. (20) 

Then, we check whether the objective function (5) is decreasing during the APG projection. If so, we re-update G k and U 

k 
n 

along with the extrapolated point updating. 

Technically, we propose an initial strategy where the { U n } is generated randomly and then processed by normalization.

It is observed that the algorithms perform better with this starting point than the Higher-order Single Value Decomposition 

(HOSVD) [36] in convergence speed. Furthermore, at the end of iteration k , we apply the dynamic feedback correction 

mechanism (21) , a first-order feedback control rule [37] , to re-update tensor X 

k when having { U 

k 
n } and G k 

X 

k +1 
� = X 

0 
� + γ ( X 

k 
� − Z 

k 
�) , X 

k +1 
�̄ = Z 

k 
�̄, (21) 

where Z 

k = G k ×1 U 

k 
1 

×2 · · · ×N U 

k 
N 

, �̄ is the complement set of �, and 0 ≤ γ ≤ 1 is a user defined hyper-parameter to con-

trol the correction. By doing this, we show that it can reduce the low-rank approximation error and obtain more stable

results. 

For the IR problem, we calculate the reconstructed tensor ˆ X = X 

0 
�

+ Z 

k +1 
�̄ as the final result, if one of the following

conditions is satisfied. ∥∥(X 

k +1 − X 

k ) 
∥∥

F 
‖ 

X ‖ 

−1 
F < tol, for some k, 

or 

∣∣F 

i 
� − F 

i +1 
�

∣∣
1 + F 

i 
�

≤ tol, i = k, k + 1 , k + 2 , (three consecutive iterations) 
(22) 

where F 

k 
�

denotes the objective function under observed index � at iteration k , and tol is a small specified positive value. 

The proposed algorithm for ARTD-based image restoration problems can be summarized in Algorithm 1 , and we denote 

Algorithm 1 APG-RTD for Image Restoration. 

1: Input : To-be-reconstructed image tensor X 

0 , indices of observed entries �, iteration number K, and the parameters 

α ≥ 0 , β ≥ 0 , 0 ≤ γ ≤ 1 and tol = 1 e −4 . 

2: Output : Reconstructed image tensor ˆ X . 

3: Construct positive semi-definite similarity matrix W ; 

4: Initialize G 0 , { U 

0 
n } ( 1 ≤ n ≤ N) randomly and define Z 

0 as null tensor; 

5: X � = X 

0 
�, X �̄ = Z 

0 
�̄

; 

6: while k < K do 

7: Optimize G by (19); 

8: for n = 1 to N do 

9: Optimize U n using (20); 

10: end for 

11: Update Tucker decomposition Z 

k = G k ×1 U 

k 
1 

×2 · · · ×N U 

k 
N 

; 

12: Implement dynamic feedback correction mechanism (21) for input tensor X 

k ; 

13: if F 

(
G k , U j≤n , U j>n , X 

k 
)

is decreasing then 

14: Re-update G k and U 

k 
n respectively; 

15: else 

16: Re-update G k and U 

k 
n respectively with 

˜ G k = G k −1 and 

˜ U 

k 
n = U 

k −1 
n ; 

17: end if 

18: until stopping conditions (22) are satisfied. 

19: end while 

20: return 

ˆ X � = X 

0 
�, ˆ X �̄ = Z 

k +1 
�̄. 

the proposed algorithm as APG-RTD for convenience. 

3.4. Convergence analysis 

Since the ARTD model is nonconvex, obtaining the optimal global solution is impossible. However, it is shown in [34] that

the optimization problem (5) with cyclic block coordinate descent updating rule has global convergence to a stationary point. 

We provide the APG-RTD algorithm’s convergence property in Theorem 1. 

Theorem 1. Let 
k = {{ U 

k 
n } , G k } be the sequence generated by Algorithm 1 , then we have the following conclusions. 
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• {{ U 

k 
n } , G k } are all Cauchy sequences. 

• If hyper-parameters α, β are nonnegative, then 
k converges to a stationary point ˆ 
 = {{ ̂  U n } , ˆ G } of (5) . 

Theorem 1 guarantees the feasibility of solutions obtained using Algorithm 1 . The proof of Theorem 1 is based on the

results of Proposition 1 and Proposition 2 . Firstly, the Cauchy sequence can be proven by showing the cost function of (5) is

sufficient descent at each step, i.e., 
∑ ∞ 

k =2 

∥∥
k − 
k +1 
∥∥

F 
< ∞ . Then, we can prove that ˆ 
 is a stationary point by verifying 

the first-order optimality conditions. We omit the detail here, and please refer [19] to see the proof. 

3.5. Computational complexity analysis 

In this section, we analyze the computational complexity of the proposed ARTD method. Following [38] , we combine the

low-rank approximation with population Tucker decomposition strategies to reduce the computational complexity. Through- 

out this section, we suppose the input tensor X ∈ R 

I 1 ×... ×I N and the core tensor G ∈ R 

r 1 ×... ×r N . We have the basic computa- 

tional complexity: the computational cost of U 

T 
n U n is O (r 2 n I n ) and the mode-n product with the matrix U n of tensor G is

O( 
∑ N 

n =1 

∏ n 
i =1 I i 

∏ N 
i =1 r i ) . Furthermore, we reformulate the Kronecker product in G 

n 
V 

= G (n ) V 

T 
n and let 

Y = G ×1 U 1 ×2 · · · ×n −1 U n −1 ×n +1 U n +1 ×n +2 · · · ×N U N , (23) 

such that we have G 

n 
V 

= Y (n ) and its computational cost is 

O 

(
G 

n 
V 

)
= O 

(∑ n −1 
j=1 

(∏ j 
i =1 

I i 
)(∏ N 

i = j r i 
))

+ O 

(
r n 

(∏ n −1 
i =1 I i 

)∑ N 
j= n +1 

(∏ j 
i = n +1 

I i 
)(∏ N 

i = j r i 
))

≤ O 

(∑ N 
n =1 

(∏ n 
i =1 I i 

)(∏ N 
j= n r j 

)) (24) 

As can be seen from Algorithm 1 , the majority of time cost is spent on tensor-matrix multiplications in which the compu-

tation of the gradients and Lipschitz U constants makes a significant contribution. Also, we conclude that the computational 

cost of tensor unfolding, soft-thresholding operator, and projection to nonnegative is negligible compared to gradient com- 

puting. 

Considering the proposed APG-RTD algorithm for core tensor ‘shrinkage’, the computation of ∇ G f ( G ) requires 

O 

( 

N ∑ 

n =1 

r 2 n I n + 

N ∑ 

n =1 

r n 

N ∏ 

i =1 

r i + 

N ∑ 

n =1 

( 

n ∏ 

i =1 

r i 

) ( 

N ∏ 

j= n 
I j 

) ) 

, (25) 

where the first part comes from the computation of U 

T 
n U n , and the second and third parts are from the computations of the

first and second terms in (16) , respectively. 

Similarly, we use (24) to calculate the computational complexity of factor matrices gradient and require 

O 

( 

r 2 n 

( ∏ 

i � = n 
I i 

) 

+ r 2 n I n 

) 

+ O 

( 

n ∏ 

i =1 

I i 

) 

+ O 

(
r 3 n 

)
+ O ( G 

n 
V ) , (26) 

where the first three parts are respectively from the computations of ∇ U n � (U n ) . 

The last part dominates the value of the value of (25) and (26) . So, the computational cost of ∇ G f ( G ) is 

O 

( 

N ∑ 

n =1 

( 

n ∏ 

i =1 

r i 

) ( 

N ∏ 

j= n 
I j 

) ) 

, (27) 

and ∇ U n � (U n ) is 

O 

( 

N ∑ 

n =1 

( 

n ∏ 

i =1 

I i 

) ( 

N ∏ 

j= n 
r j 

) ) 

. (28) 

Then, the time complexity of the APG-RTD algorithm in each iteration is approximately estimated as 

O 

(∑ N 
n =1 

(∏ n 
i =1 r i 

)(∏ N 
j= n I j 

)
+ N · ∑ N 

n =1 

(∏ n 
i =1 I i 

)(∏ N 
j= n r j 

))
, (29) 

where the per-iteration cost is relevant to the tensor sizes 
∏ n 

i =1 I i , and Algorithm 1 is theoretically efficient [19] . 

4. Experimental results 

To validate the effectiveness of the proposed method for the IR problem, we perform both random missing (RM) and 

structural missing (SM) experiments on popular RGB-color images (shown in Fig. 1 ) that are widely used in IR. For com-

parison, we select the baseline methods, including HaLRTC [1] and SMF [14] , representing the matricization-based method; 

t-SVD [4] represents the state-of-the-art tensor tubal rank minimization based method; SPC [5] represents state-of-the-art 

CP decomposition based method; STDC [12] , KBR [17] , and LR-SETD [18] , representing state-of-the-arts Tucker decomposi- 

tion based method. All experiments are performed using MATLAB on Windows 10 64-bit operating system on a workstation 

equipped with an Intel(R) Xeon(R) W-2123 CPU with 3.60 GHz, 64 GB RAM. 
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Fig. 1. Four color images for our experiments. From left to right: House, Baboon, Peppers, Lena. 

Table 2 

Numerical performance of the seven methods with random missing entries on the House image. The 

best results are highlighted in bold. 

SR 0.01 0.05 0.07 0.1 

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Time 

HaLRTC 5.79 0.0020 5.97 0.0082 6.07 0.0110 6.72 0.0337 0.6 

SMF 6.89 0.0195 11.22 0.1098 13.24 0.1826 16.14 0.3230 40 

STDC 5.85 0.0036 7.15 0.0362 8.39 0.0702 10.92 0.1578 1.6 

SPC 16.46 0.2870 22.85 0.6559 24.16 0.7225 27.92 0.8605 62 

tSVD 16.69 0.3097 21.71 0.6261 23.14 0.6928 24.73 0.7583 43 

KBR 17.71 0.3320 20.79 0.5806 22.27 0.6448 24.97 0.7620 31 

LRSETD 18.20 0.2682 20.01 0.4423 20.65 0.5005 21.41 0.5670 14 

ARTD 17.51 0.3445 24.22 0.7288 25.49 0.7776 26.68 0.8192 36 

 

 

 

 

 

 

 

 

 

Performance evaluation. The peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) [39] , relative squared 

error (RSE), and execution time (in seconds) are used to evaluate the performance of various methods quantitatively. The 

evaluation metrics are defined as 

PSNR = 10 · log 10 

( X max ) 
2 ∥∥ ˆ X − X true 

∥∥2 

F 
/ 
∣∣�̄∣∣ , (30) 

RSE = 

∥∥ ˆ X − X true 

∥∥
F 

‖ 

X true ‖ F 

, (31) 

where ˆ X , X true and X max represent the reconstructed tensor, ground-truth tensor, and the maximum value in the ground- 

truth tensor, respectively. Additionally, 
∣∣�̄∣∣ represents the number of elements of the complement set �̄ of �. Smaller RSE 

and execution time, larger PSNR and SSIM indicate better reconstruction performance. 

Parameter Settings. Throughout this section, we adopt the relative change of the two successive reconstructed image 

tensor (22) as the stopping criterion for all methods and set the maximum number of iterations as K = 300 for all algo-

rithms. There are three parameters α, β and γ in ARTD model. In all our experiments, we determine the parameter α using

different mode- n unfolding matrices given the image tensor, 

αn = 

∥∥X (n ) 

∥∥2 

F 

2 ∗ ‖ 

L n ‖ 

2 
F 

, n = 1 , 2 , 3 . (32) 

which plays a key role in model performance. Compared with the hand-tuning strategy, our proposal performs more ro- 

bustly. Next, tuning the low-rankness parameter β can enhance the model performance, and we easily set β = 1 . The latter

γ is used to correct the low-rank approximation of a clean image, and we just set γ = 0 . 2 . 

4.1. Random missing 

We randomly sample corrupted images with sampling rates (SRs) { 0 . 01 , 0 . 05 , 0 . 07 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 } . Fig. 2 shows the

visual quality of color image restoration for random sampling entries using seven utilized LRTA methods with SR = 0 . 1 .

It can be seen that HaLRTC, STDC, and SMF perform poorly in high-level corruption, which suggests that the global low-

rankness is not enough for the IR problem. SPC, KBR, and tSVD can overcome the low precision problem; however, they

lose details due to over-smoothness. LRSETD introduced the core tensor sparsity into global low-rankness in Tucker-based 

models. Still, the smoothness constraint on the clean image cannot capture the local similarity, which makes the restoration 

results still contain incomplete pixels. Table 2 Table 3 summarizes the PSNR, SSIM, and execution time of the House image

with SRs = 0 . 01 , 0 . 05 , 0 . 07 , 0 . 1 . The best results show that our proposal ARTD has tolerable time consumption and improves

performance significantly, so ARTD outperforms the other state-of-the-art methods under high-level corruption. 
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Fig. 2. IR results for random missing entries with SR = 0 . 1 . From left to right: the clean image, the corrupted image, and the IR results by our proposal 

ARTD, KBR, LRSETD, STDC, SPC, t-SVD, SMF, and HaLRTC, respectively. From top to bottom: House, Baboon, Peppers, and Lena. 

Table 3 

PSNR, SSIM, and Time (in seconds) of different Tucker-based methods for Lena IR in the RM case. The best values are highlighted in 

bold. 

SR 0.01 0.05 0.1 0.2 

Methods PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time 

NTD 13.44 0.0865 85.54 16.20 0.2361 85.06 17.09 0.3170 85.81 19.40 0.4151 84.36 

SNTD 13.68 0.1014 85.42 16.37 0.2404 85.39 17.73 0.3170 85.82 20.07 0.4390 85.64 

GNTD 13.96 0.0977 86.35 16.55 0.2554 86.35 17.89 0.3436 89.89 20.04 0.4623 89.02 

ARTD 

∗ 13.27 0.0846 32.48 16.87 0.1982 32.57 18.91 0.2936 33.13 23.61 0.5441 33.28 

ARTD 14.75 0.1150 35.05 18.86 0.2983 35.11 20.83 0.4186 35.96 24.97 0.6334 36.30 

 

 

 

 

 

 

 

 

 

 

 

 

To further compare the model performance of our proposal ARTD, we plot the PSNR, SSIM, RSE, and execution time for

each method in Fig. 3 . ARTD performs better in all SRs for the House image and obtains higher PSNR and SSIM values when

SR > 20% for other images. Although the SPC obtains the best IR performance in a tiny sampling (SR < 10%, see Fig. 3 (b), (c),

and (d)), in contrast, our proposed method is more efficient and can reconstruct images with more details. 

4.2. Structural missing 

Below, we consider the structural missing, Fig. 4 shows the IR performance for missing slices and image masking scenar-

ios. It can be seen that the global low-rankness method, including t-SVD, STDC, SMF, and HaLRTC, almost fails for House and

Peppers images, and the results obtained by LRSETD and SPC lost image textures for Baboon and Lena images. Compared 

with KBR, the proposed method yields a much better visual effect in keeping details and structures for all images, which

supports that ARTD works more stable on different types of missing scenarios. To see the details of these methods on IR,

we report the PSNR and RSE values in Fig. 4 , where the results also show that ARTD performs better in achieving higher

PSNR values. 

4.3. Discussions 

Contributions of priors: We discuss the contributions of the new prior structure to the IR performance for Lena under 

SR = 0.2 in Fig. 5 . On the one hand, the sparsity core tensor with nonnegative factor matrix constraint encodes the global

knowledge under the corrupted image, the same as the SNTD and NTD methods with a given Tucker rank. On the other

hand, the local textures of the corrupted image can be captured using factor matrices nonnegative and manifold learning 

strategy (see ARTD 

∗ and GNTD results). Table 2 summarizes the PSNR, SSIM, and running time of different Tucker-based 

prior methods for IR. It can be shown that the IR performance has been improved, and the prior knowledge has different

results and complements each other, so the proposed method can simultaneously preserve the GCS and LSS knowledge of 

the underlying image. 

Convergence behaviors: We have theoretically proven that the sequences generated by Algorithm 1 converge to a station- 

ary point in Theorem 1. Here, we show the numerical convergence of the proposed algorithm. Fig. 6 shows the curves of
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Fig. 3. Comparison results of evaluation metrics with respect to SRs. (a) ARTD performs better in all SRs. (b)-(d) ARTD is less time-consuming and performs 

robustly in different image data. 

Fig. 4. IR results for structural missing. From left to right: the clean image, the corrupted image, and the IR results by our proposal ARTD, KBR, LRSETD, 

STDC, SPC, t-SVD, SMF, and HaLRTC, respectively. From top to bottom: House, Baboon, Peppers, and Lena. 

Fig. 5. IR results given by different Tucker-based prior methods. The SRs is 20%, and the results show that different priors complement each other. From 

the second column to the bottom: ARTD, ARTD with no manifold regularization (denoted as ARTD ∗), GNTD, SNTD, and NTD. 

Fig. 6. RSE comparison under different SRs versus iterations of image Lena. 
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the RSE values versus the iteration number of the proposed ARTD on Lena. Remark that the RSE keeps decreasing as the

iteration number increases, and the values stabilize after only about 250 iterations, which implies the proposed algorithm’s 

numerical stability and convergence. Furthermore, we test the Lena under SRs 20% to show that the proposed initialization 

strategy and the first-order control rule can speed up the convergence of the proposed algorithm. 

5. Conclusion 

This paper proposes a new prior structure for the IR problem. A nonnegative and manifold regularized factor matrix com- 

bined with a sparsity Tucker core tensor is used to capture the intrinsic image characteristics, i.e., GCS and LSS, respectively,

in a low-rank approximation manner. We have also designed and implemented an effective APG-based algorithm for solving 

the ARTD model and established the convergence guarantee of the proposed algorithm in Theorem 1. A series of numerical 

experiments with low percentages of SRs demonstrate that the proposed method outperforms the state-of-the-art methods. 

ARTD also performs more robustly, as shown in Fig. 2 and Fig. 4 . With the priors of image data considered in this paper,

ARTD may be extended to address the spatiotemporal traffic data imputation in future work. 
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