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Abstract. Traffic data possesses spatiotemporal characteristics and encounters
missing value problems due to sensor failure in real-world scenarios. Addressing
this challenge requires a fast and efficient traffic data imputation method capa-
ble of leveraging spatiotemporal information. This paper proposes a Bayesian
Augmented CP factorization (BACP) model for the traffic data imputation, which
combines the Multiplicative Gamma Process (MGP) with the CP factorization to
address the CP rank estimation. Extensive experiment results demonstrate that
the BACP model has superior imputation accuracy. Additionally, it offers explicit
interpretation of traffic patterns and exhibits lower computational complexity than
other Bayesian methods.
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1 Introduction

With advancements in sensor technologies, the increasing development of Intelligent
Transportation Systems (ITS) has led to more multidimensional traffic data collection.
Traffic data encompasses temporal and spatial attributes since the data is acquired at
specific times and locations [1, 2]. On the one hand, real-world traffic data may suffer
from missing data problems due to sensor failures, weather conditions, and occlusions
caused by environmental obstacles [3]. The missing traffic data imputation is one of the
most critical research questions in traffic data analysis [4] since accurate and reliable
imputation can help various applications in ITS, such as traffic forecasting, traffic control,
and traffic management. On the other hand, the tensor-based method demonstrates the
capacity to capture the spatiotemporal characteristics of traffic data, proving the data in
a third-order tensor form [5]. The significance of handling missing traffic data based on
low-rank tensor decomposition (LRTD) has become increasingly prominent in traffic
data imputation [6].

The current LRTD models mainly have two typical aspects: Tucker decomposition
[7] and CP (CANDECOMP/PARAFAC) factorization [8]. Ran et al. [9] proposed a low
multilinear rank tensor decomposition model to explore spatiotemporal information and
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estimate the missing traffic volumes. Goulart et al. [10] demonstrated that Tucker-based
imputation methods are effective when processing missing speed data. Chen et al. [11]
introduced a framework consisting of three processes that utilize Tucker decomposition
to predict missing values by considering the spatiotemporal features of traffic data.
Gong et al. [12] proposed a novel spatiotemporal regularized Tucker decomposition
model for addressing the traffic data imputation, which adopts a perspective emphasizing
tensor sparsity without requiring a predefined Tucker rank. However, those methods
based on Tucker decomposition involve large matrix operations, which bring high time
consumption and cause inefficiency in the solution algorithm.

Numerous efficient and interpretability models have emerged in the context of CP-
based traffic data imputation methods, including those that incorporate spatiotemporal
characteristics. Xu et al. [13] devised an interpretable and adaptable Spatiotemporal
Bayesian Multivariate Adaptive-Regression Splines (ST-BMARS) model for traffic data
analysis. In addition, Chen et al. [14] proposed a Bayesian Gaussian CP decomposition
model to solve the problem of temporal dependencies in traffic data by using the Bayesian
probability framework. However, the current CP-based models necessitate the manual
specification of the tensor rank, which presents a challenge in determining the appropriate
CP rank.

It is crucial to highlight the limitations of CP rank determination, which has been
proven NP-hard. Previous studies have divided the CP rank estimation into rank opti-
mization [15] and Bayesian inference [16, 17]. However, it often takes much time to
achieve this goal. Zhao et al. [18] developed a deterministic Bayesian inference model,
Automatic Rank Determination (ARD), which solves the CP rank estimation but scales
linearly with tensor size. Takayama et al. [19] applied the Multiplicative Gamma Process
(MGP) Shrinkage Prior to ARD, achieving better rank accuracy. It has been observed
that the performance of the Gaussian-Gamma models is not satisfactory when dealing
with tensors of high rank and/or low signal-to-noise ratios. To address these limita-
tions, Cheng et al. [20] proposed the integration of a Generalized Hyperbolic (GH) prior
into the probabilistic CP model. Zhang et al. [21] investigated general-purpose Bayesian
tensor learning, which determines the CP rank automatically and can quantify the uncer-
tainty of results. Those enhanced prior exhibit flexible model building and superiority
performance varying in different missing scenarios.

In summary, many off-the-shelf CP-based models struggle with rank determination
and modeling capacity. Furthermore, a fast and efficient traffic data imputation method
that can utilize spatiotemporal information remains. In this paper, we apply the MGP
shrinkage prior to the proposed augmented CP factorization model under the variational
inference framework, which solves the problem of rank estimation and interprets the
traffic patterns.

2 Preliminaries

The following section reviews the concepts related to CP factorization. Table 1 shows
all the notations used in this paper.
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Table 1. Notations.

Symbol Description

a A A A vector, matrix, and tensor, respectively

rank (A) The minimum number of rank-1 tensors

(A, B) The inner product of tensors .A and B

||.A||12[7 The squared Frobenius norm of tensor A

A®B The Hadamard product of matrices A and B

A®B The Kronecker product of matrices A and B

AOB The Khatri-Rao product of matrices A and B

A k§2 AR Z AN ... o AMHD g A=) o ... 5 AD
n

3 Proposed Model: BACP

This paper proposes a novel CP factorization model, Bayesian augmented CP factoriza-
tion (BACP), for traffic data imputation and semantic traffic patterns interpretation. The
proposed model combines the Multiplicative Gamma Process (MGP) shrinkage prior to
the CP factorization to facilitate the automatic determination of the CP-rank.

3.1 Model Analysis

Assumed that ) consists of independent Gaussian distribution:

R
Viviis ~ N+ @iy + 0y + Mis + D Mrttiyrttiprtiiyr, 77 1), Vi, i, i3), (1)

r=1

W iy Oy iy N (o, 75 D). Y(ir, i, i), 2" ~ N0, A1), ¥ e [1, 3],
A = [A1, ..., AR], A = diag(}r), T, ~ Gammal(ao, by).

where NV () denotes Gaussian distribution, and . is the precision parameter which holds
auniversal value applicable to each element within the tensor. Besides, © € R denotes the
pervasive impact on tensor elements, ¢ € R', 0 € R2, n € R capture the information
of dimensions, AV € RI*R AP ¢ RRXR ABG) ¢ RI*R gre factor matrices governing
interactions across distinct dimensions, and A € R®*X corresponds to the weight of each
rank-1 tensor.

The proposed BACP model is driven by the MGP prior in Bayesian framework,
which is represented by Eq. (1). The MGP prior, as described in Eq. (2), applied to the
precision of the Gaussian distribution for A, shrinks the A, towards zero as r increases.
Figure 1 provides a graphical representation of the BACP model.

-
Ar ~ Gamma(cg, ), 1 <r <R, 1, = l_[5l(0 < 6, < 1), 6, ~ Gammal(egp, fo). (2)
=1
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Remark. In the augmented CP factorization model, the parameter . aims to approx-
imate the average value of tensor elements. Conditional upon v, biases are introduced
along each dimension to encapsulate explicit tensor patterns or characteristics. For the
traffic data imputation, it proves advantageous to interpret the traffic patterns that account
for biases in spatial and temporal attributes.

a

A® l"e RI2XR

il

d) € [Rll g€ ]R’z ne ]RIS A(l) = RllxR

Fig. 1. Visualization of the proposed BACP model.

3.2 Variational Inference of BACP

Let® = {u, ¢,0,n, AD AD AG 3y s, 7.} for the convenience, this paper employs
variational inference to learn parameters from the data tensor )/, which involves iden-
tifying a distribution ¢(®) that acts as an approximation to the posterior distribution
p(O|YVq). We present the procedure of solving algorithm for the BACP model.

We first calculate the joint distribution by Eq. (3)

I L I3 3
PV, ©) =p(Val®) x p(u) x [ [ p@i) [ p@n) [ ] i) [ [rA™ 1)

i1=1 =1 i3=1 n=1
. 3)
< [ [p@rlzp@e) x p(ze).
r=1
Then we derive ¢g(®) in a manner that minimizes the KL divergence
argmingKL(q(©)|[p(®|Vq)) = argmax,L(q), 4)

where L(q) = [ ¢(®)In{p(Vq, ©)/q(0®)}d © denotes the lower bound. Thus, the mean-
field approximation for ¢(®) is denoted as

I I Iz 3 R
4©) =g x [T a@i) [T 9@ [Tatn) [Ta(A"1R) x [Ta01ma6) x gz (5)

i1=1 ir=1 i3=1 n=1 r=1

The j-th factor optimization is obtained through maximizing £(q)

In ¢(0©;) = Eg@\0,)[Inp(Va., ©)] + const, (6)
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where the E4@\0;)['] represents the expectation of overall variables except ©;.

Posterior Distribution of Global Parameter 1
We can get the posterior of i as Gaussian distribution g(u) = N (fo, Ty 1) with

fo=7%"Elzl Y Elzynil +tom0). 0o =Elrl > Ouniy +70. (7)

(i1,iz,i3)€QR (i1,iz,i3) €2
R

where Ziyigis = Yiyipis — ¢i1 - 91'2 — Niz — Z aj rQirrdizr-
r=1

Posterior Distribution of Bias Vectors {¢, 6, n}
The variational posterior of ¢;, is Gaussian distribution g(¢;;) = N (fig, f¢_ l) with
fip=7"Elt) > Elfyii] +tom0). T =Eltel Y 0iiiy + 70, (8)
(i1,i2,13) €82 (i2,i3)€Q2
R
where fj i,iy = Yijiniy — & — i, — Niy — Y_, ai,raiyraizr. Upon obtaining the variational

r=1
posterior distribution g(¢;, ), the variational posterior distributions g(6;,) and g(n;;) can

be derived through the similar procedures.
Posterior Distribution of Factor Matrices [A), A® A®)]
The posterior distributions of the factor matrices have been demonstrated to be

decomposable into independent distributions of their rows, which exhibit Gaussian
characteristics. The posterior distribution of [A®] is given by

IVI
gAP) = [N(a® 13", V), Vn e[1,3], ©)
i =1
and we update the posterior parameters through
a" =Efz, V" E[A"" Tvec(W,q, -, ),V = (Biz, JE[A7 A |+ EfA])",  (10)

where the operation vec(-) denotes the process of vectorization performed column-wise,
Witizis = Yijiiz — M — @iy — 0i, — iy and I(-) denotes the indicator function.

Posterior Distribution of MGP Prior
Considering the weight parameter A, combining with MGP prior, we have

q(hr) = Ga(s|cyy, dy), (11)

and its parameters are

3 3
1 1
chy =co+ 3 § L. di; = E[z,] + 3 § ‘E[a"Ta™1. (12)
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The posterior distribution of § and its parameters are as follows.

q(8,) = Ga(Srley, fyr). (13)
R h
ey = R—r+Deo+eo.frp =Y Byl [ Eglsil +fo- (14)
h=r I=1,l%#r

The precision parameter 7 € R, where the variational posterior is derived as Gamma
distribution ¢(t.) = Ga(t.|ay, by ), and its parameters are as follows.

1
ay = ap + 5 E Oil,iz,iw by
i1,i2,i3

1
= b+ 3E[000 - 0F | =bo+ Y ElOunn—sinn)’l (5)

(i1,i2,i3) €2

3.3 Algorithm Analysis

Convergence

The assessment of algorithmic convergence is facilitated by monitoring the lower
bound value. £(g) exhibit a monotonic increase at each epoch, serving as an indicator
of algorithmic convergence. We can get the lower bound as follows:

L(q) = E4[lnp(Va|O)] + E4[In p(u)] + E4lln p(@)] + Ey[In p(0)] + Eg[In p(n)]

3
+ Y Eglln p(A®10)] + Eylln p(ze)] + Ey[In p(8)] + Ey[In p(1)]

n=1
— Egllng(n)] — Eq[Ing(¢)] — E4lln g(0)] — Eg4[lng(n)]
3
— Y "Eyllng(A”|0)] = Eylre] — Eyl8] — Eg[A]. (16)
n=1

The algorithm converges when the condition holds:

L(@)D — L)V
L(q)®

€, (17)

where € is the adjustable parameter that acts as the convergence threshold.
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Algorithm 1: Bayesian augmented CP factorization using MGP shrinkage prior(MGP-

BACP)

input : Observation data tensor Y/t*2*% indicator tensor O""*2*%_ 1 ¢ 60,1 and
factor matrices A, A A®),

output: Estimated tensor ) € R"*2*55_and updated yu, ¢,0,1, and AV, A®) AG)

Initialize: V,(-",').‘v’i,, € [1,1,],Vn € [1, N], ao, by, co, do, €0, fo, to = 0,70 = 1,7 = B2 A =

29, = T(S-VI € [1. R]

Tr

=

2 repeat

3 Update the posterior distribution ¢(u) using Eq.(7).

4 for i, =1 to I, do

5 Update the posterior distribution ¢(¢;,) using Eq.(8).

6 Update the posterior distribution q(af»l')) using Eq.(10).
7 end

8 for i, =1 to I, do

9 Update the posterior distribution ¢(#;,) using Eq.(8).
10 Update the posterior distribution (/(af-f)) using Eq.(10).
11 end

12 for i3 =1 to I3 do

13 Update the posterior distribution ¢(7;,) using Eq.(8).
14 Update the posterior distribution q(aff)) using Eq.(10).
15 end

16 Update the posterior distribution ¢(d) using Eq.(14).

17 Update the posterior distribution ¢(A) using Eq.(12).

18 Update the posterior distribution ¢(7.) using Eq.(15).

19 Calculate the variational lower bound £(¢) using Eq.(16).
20 Reduce the rank R by removing the 0 component of A, A? A®),
21 until £(q) converges by checking Eq.(17).;

Computation Complexity

The factor matrices are the most computationally intensive part of our algorithm with
Eq. (10) which cost O(NR*M + R? >, In), where N denotes the order of tensor, ), I,
is the sum of values of each dimension, R is tensor rank and M is the number of obser-
vations. The computation cost of global parameter A is O(R? > nIn). 8 costs OR?), t
costs O(R*M), and p, ¢, 0, n cost less than O(3_, I,). Therefore, the complexity of
BACP is O(NR*M + R?). When employing MGP priors, our rank estimation tends to
be conservative [19], enabling faster computation with smaller rank.

4 Experiments

In this section, we conduct experiments on three open urban traffic datasets to compare
the BACP model with baselines in different missing scenarios and demonstrate the
proposed model’s interpretability on one data set.

4.1 Settings

Dataset. We use the following three open urban traffic datasets for our experiment and
form them as 3rd-order tensors for traffic data imputation problems.
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e (G): Itwas collected over two months, specifically from August 1, 2016, to September
30, 2016. The speed data was recorded every 10 min. It was expressed as a third-order
tensor with size 216 x 61 x 144 (road segment x day x time interval).

e (S): It contains highway speeds for 323 loop detectors in Seattle, USA, throughout
2015. A subset (from February 1 to February 28) is selected and structured as a
third-order tensor with size 323 x 28 x 288 (road segment x day x time interval).

e (PeMS): The traffic dataset in California, USA, for 358 data sets collected in the
Gulf of California for 5 min for three months (September 1 to November 30, 2018).
It contains a subset of 24 detectors for one month and forms a third-order tensor with
size 24 x 30 x 288 (road segment x day x time interval).

Performance Metrics. For evaluating the imputation performance, the Mean absolute
percentage error (MAPE) and root mean square error (RMSE) are adapted,

L g i = 9l
MAPE = — y 2
N

N
1
x 100, RMSE = | 21: (i — 912, (18)
1=

where N represents the overall count of missing values, y; and y; denote the real value
of a missing element and its corresponding imputation result.

Experimental Settings. Initially, we set different missing rates in the two scenarios
while keeping the rank fixed. Subsequently, we compare the BATF model to demonstrate
our automated rank determination. Finally, we showcase the interpretability of our model
using datasets. The maximum epoch is set to 200; the max rank is set to 100, and the
convergence threshold € is set to 1e-4.

Baselines. For comparison, we select three Bayesian CP factorization models: the
Bayesian augmented tensor factorization (BATF, Chen et al. [26]), the Bayesian CP
factorization (BCPF, Zhao et al. [18]), and the Bayesian CP factorization with ARD
using MGP shrinkage prior (MGP-ARD, Takayama et al. [19]). The comparison of each
model is shown in Table 2.

Table 2. The difference between baselines and BACP.

BCPF MGP-ARD BATF BACP
Interpretability N Vv
Automatic CP Rank J Vv Vv

4.2 Results

Performances with Given Rank
We first compare the proposed BACP model with BCPF and MGP-ARD methods with
the given CP rank. The proposed BACP model outperforms the other two baselines in
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Table 3. (MAPE/RMSE) of two missing scenarios on three datasets with given rank.

Dataset Missing Scenario BCPF MGP-ARD BACP

G) EM40%(r = 30) 8.50/3.66 8.52/3.67 8.43/3.63
EMS50%(r = 30) 8.54/3.68 8.56/3.69 8.46/3.64
FM40%(r = 30) 10.58/4.71 10.72/4.76 10.13/4.32
FM50%(r = 30) 10.70/4.75 10.85/4.84 10.36/4.40

(S) EM60%(r = 30) 6.86/4.92 6.88/4.96 6.80/4.85
EM70%(r = 30) 6.95/5.08 6.96/5.09 6.88/5.02
FM60%(r = 30) 8.49/5.68 8.68/5.91 8.40/5.53
FM70%(r = 30) 9.18/7.16 9.50/7.36 9.11/7.11

(PeMs) EM60%(r = 30) 7.80/23.99 7.85/24.04 7.79/23.97
EM70%(r = 30) 7.92/24.63 7.97/24.35 7.90/24.40
FM40%(r = 30) 12.50/37.00 12.62/36.98 12.40/36.43
FM50%(r = 30) 14.02/38.85 13.06/38.04 12.43/37.54

terms of accuracy, as evidenced by diverse missing rates and missing scenarios. Table 3
demonstrates the performances, with the best results highlighted in bold fonts.

Performances of CP Rank Estimation

Table 4 shows the overall imputation performance of BATF and BACP on the three
datasets under different missing scenarios. We select the rank value commonly assigned
in the refer paper for the BATF rank. For BACP, we set the initial max rank to 100 and then
use MGP prior to make it automatically shrink the rank. In contrast to the semantic model
BATF, the proposed BACP model exhibits superior performance under 10% missing
rates, with a marginal loss of accuracy within 1%, yet achieving a significantly faster
runtime with 58.7% enhancement. The results of the BACP model also demonstrate that
is non sensitivity to different missing rates.

Semantic Interpretations

We present the semantic representation of the proposed BACP model on dataset S. The
global parameters in Fig. 2 represent the average speed curve, which is close to the
average speed of the real data. Figure 3 shows the bias of the time intervals and road seg-
ment dimensions from the global parameters, where a positive bias value indicates good
road conditions, and a negative one indicates poor road conditions. These parameters
represent the explicit patterns of the model and have good practical significance.

In Fig. 3, the first graph shows the biases between the global average speed and the
average speed of each road so we can find which road segment is in good condition. We
sort the roads according to the number and select road number #210 for analysis from
the time dimension in the second graph. We can find two days a week in bad condition,
from a practical point of view, which is the local weekend, caused by more vehicles, as
true as the facts. In addition, on a specific day, night bias is often positive, and day bias
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Table 4. (MAPE/RMSE) of manually selected rank and automatically determined rank.

Dataset Missing Scenario BATF BACP

(G) EM10% 8.25/3.57 (r = 80) 8.34/3.64 (r = 64)
EM30% 8.41/3.63 (r = 80) 8.59/3.74 (r = 55)
EM50% 10.20/4.19 (r = 80) 10.42/4.40 (r = 49)
FM10% 9.76/4.13 (r = 20) 9.64/4.08 (r = 28)
FM30% 9.95/4.23 (r = 15) 9.98/4.25 (r =13)
FM50% 10.29/4.36 (r = 10) 10.33/4.40 (r =17)
Average Runtime(s) 2137 883

(S) EM10% 5.84/4.11 (r = 30) 5.88/4.15 (r = 34)
EM30% 6.15/4.38 (r = 30) 6.24/4.46 (r = 22)
EM50% 6.48/4.62 (r = 30) 6.60/4.67 (r =19)
FM10% 7.26/4.94 (r = 30) 6.74/4.64 (r = 24)
FM30% 7.34/5.03 (r = 30) 7.28/4.95 (r = 20)
FM50% 7.69/5.21 (r = 30) 7.24/4.50 (r = 18)
Average Runtime(s) 3293 1482

(PeMs) EM10% 6.98/23.05 (r = 30) 6.98/23.04 (r = 27)

EM30% 7.49/23.19 (r = 30) 7.61/23.37 (r = 21)
EM50% 7.69/23.69 (r = 30) 7.78/23.87 (r = 19)
FM10% 8.57/30.72 (r = 30) 8.61/31.01 (r = 23)
FM30% 9.50/34.03 (r = 30) 9.78/34.96 (r = 18)
FM50% 12.19/37.12 (r = 30) | 12.53/37.79 (r = 15)

Average Runtime(s)

524

240

is often negative. Therefore, our model has realistic interpretability for traffic data, and
we conclude those as follows.

e Global explainability: the average value of the overall velocity.

e Interpretability in time dimension: judge day/night or working day/weekend by
the positive and negative values of bias.

e Interpretability in spatial dimension: judge the road conditions of specific roads
by the positive and negative values of bias.

Imputation Example
Here, we also show the imputing example of the BACP model on dataset G with a 50%
fiber missing scenario in Fig. 4. It indicates that BACP imputes missing values more

accurately.
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Fig. 4. Imputation results of traffic speed data (km/h) with 50% fiber missing scenario.

5 Conclusions and Future Work

The missing traffic data imputation is one of the most critical research questions
in traffic data analysis. This paper proposes an interpretable CP factorization model
named Bayesian Augmented CP factorization (BACP) for traffic data imputation. BACP
addresses the CP rank determination using the Multiplicative Gamma Process (MGP)
prior and derives closed-form update rules within the variational inference framework.
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Besides, the BACP model consists of latent factors, which exhibit excellent interpretabil-
ity of traffic data patterns. Numeric results under various missing scenarios indicate that
BACP outperforms other rank-self-adjusting baselines and is faster than the BATF model.
The future work includes extending it to other tensor completion tasks, such as image
inpainting, and employing different priors based on dataset characteristics to achieve
superior results.
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