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ABSTRACT

Recent advancements in low-rank tensor measures have ad-
dressed tensor completion challenges, particularly in image
completion (IC) tasks. However, the most current low rank-
ness is often based on the unfolding matrix’s rank summa-
tion. Moreover, it ignores the local similarity or adapts over-
smoothed regularization to the image data, which could be
unreliable in high-level corruption recovery. This paper pro-
poses a novel Tucker-based model to consider global and lo-
cal information in imaging. Specifically, the weighted fac-
tor matrix rank and core tensor sparsity are used to encode
the global low rankness, while graph regularization is em-
ployed to characterize the local similarity. This paper pro-
poses a linearized alternating direction method (LADM) with
easy subproblems for solving the IC task. Extensive experi-
ments demonstrate the accuracy of our proposal, even under
extreme cases, such as 99% missing scenario.

Index Terms— Enhanced Tucker decomposition, graph
regularization, linearized alternating direction method, image
completion

1. INTRODUCTION

Image completion (IC), a fundamental problem in computer
vision, aims to recover the original image from its corrupted
observation [1]. From the mathematics standpoint, recover-
ing the lost information is a typical ill-posed inverse problem.
Recently, low-rank tensor completion (LRTC) methods have
been successfully applied to IC tasks [2, 3], where the tensor
structure delivers intrinsic multidimensional information un-
derlying image data. From the perspective of Bayesian, the
LRTC problem can generally be expressed as a maximum a
posterior (MAP) model:

minimize
X

L(X̂ , T ) + λR(X ), (1)

∗Thanks to Shenzhen Science and Technology Plan platform and carrier
special (Grant No. ZDSYS20210623092007023), Shenzhen Scientific Re-
search Funding (Grant No. K22627501), and Guangdong Province Universi-
ties and Colleges Key Areas of Special Projects (Grant No. 2021222012) for
funding.

where L(·, ·) measures the error between output image X̂ and
corrupted input image T , and R(·) is the tensor measure.
Thus, the core of the IC task is to utilize prior structures ratio-
nally [4], such as low-rankness (global correlations in tensor
image) and smoothness (local similarity across various image
channels).

The low rankness has the following two folds. On the
one hand, tensor rank minimization, including multilinear [5]
and tubal ranks [6], has been commonly analyzed in LRTC
problems. However, these methods do not work well for
highly corrupted images and cannot simultaneously encode
local similarity in imaging. On the other hand, low-rank
tensor decomposition (LRTD) models [7, 8] perform more
robustness and precisely, enhancing the learning capabilities
of the LRTC model. The challenge associated with LRTD
lies in constructing an appropriate decomposition model that
effectively represents the underlying low-rank structure.

In this paper, we aim to answer three major open ques-
tions. Firstly, considering that the Tucker rank relaxation is
not unique, constructing a rational low rankness in the Tucker
model is crucial. Secondly, local similarity should not be ne-
glected for multidimensional imaging. From the perspective
of subspace learning, characterizing the within-mode similar-
ity is essential to get more precise IC results. Finally, the
Tucker-based model is a nonconvex optimization problem,
which needs an efficient implementation algorithm to find the
stationary points.

This paper combines global and local priors for the IC
task, and Fig 1 gives a visual display for our proposal. We
recover an image under the assumption of ‘low rankness’ and
consider the Tucker model’s factor graph regularization con-
straints to characterize the image’s underlying local similar-
ity. The main contributions of this paper are summarized as
follows.

1. Motivated by [9] and [10], we use the weighted fac-
tor matrix rank and core tensor sparsity to encode the
global low Tucker rank. Furthermore, the factor matrix
weight is self-adaptive, and a tradeoff parameter is de-
termined to compromise the low-rank and sparsity role.

2. To get a more accurate recovery performance, we con-
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sider graph regularization as an effective constraint to
characterize the local similarity of imaging. We call
our proposed model Enhanced Low-rank and Sparse
Tucker Decomposition (E-LRSTD), which encodes
global and local similarity of imaging simultaneously.

3. We minimize the proposed E-LRSTD model using
the linearized alternating direction method (LADM)
algorithm and reformulate it as the nuclear norm min-
imization and sparse coding problem, which deduces
the closed-form updating rules.

Fig. 1. Visual display for the proposed E-LRSTD model.

2. NOTATIONS AND RELATED WORKS

2.1. Notations

We give related concepts of Tucker decomposition as follows
and present all notations used in this paper in Tab. 1.

Table 1. Notations
X ,U, α A tensor, matrix and real value, respectively.

Ω, Ω̄ Observed index set and its complement.
Sη(x) Shrinkage operator with η in component-wise.
Dη(U) SVD shrinkage of matrix U.

XΩ Observed entries on the observed index.
×n,⊗ Mode-n and Kronecker product.

tr Trace operator.
∥·∥F , ∥·∥∗ Frobenius and nuclear norm.

X(n) Mode-n unfolding of tensor X .

Given a tensor X ∈ RI1×I2×···×IN , Tucker decompo-
sition represented by a core tensor G ∈ RI1×I2×···×IN

multiplying matrix Un ∈ RIn×In along each mode, i.e.,
X = G×1U1 · · · ×N UN = G ×N

n=1 Un. Based on the
matrix Kronecker product ⊗, the Tucker decomposition
can be written in the matrix form: X(n) = UnG(n)V

T
n ,

Vn = (UN ⊗ · · ·Un+1 ⊗Un−1 ⊗ · · ·U1) and the super-
script ‘T’ represent matrix transpose.

Table 2. Some existing Tucker-based methods utilizing dif-
ferent priors

IC methods Types of the priors
Low-rankness Sparsity Smoothness

E-LRSTD ✓ ✓ ✓
ARTD [4] ✓ ✓
Transform-based [14] ✓ ✓
SBCD [10] ✓ ✓ ✓
logTucker [12] ✓
ESP-LRTC [9] ✓ ✓
KBR [8] ✓ ✓
STDC [17] ✓ ✓

2.2. Related works

Low rankness measures are commonly used prior structures
in the LRTC problem. For example, matricization terms, such
as rank-summation [5, 11] and its nonconvex relaxation [12],
were proposed for the IC task. The tensor trains (TT) [13] for-
mulation, an extension of Tucker, also performed well in the
LRTC problem. Furthermore, the sparsity measure defined
by rank-1 Kronecker bases and nonzero-block core tensor [8]
is first proposed to encode the low rankness in image recov-
ery. Also, exploiting the low-rank structure induced by the
transformer [14, 15] was well-studied in the IC task.

To capture the local similarity, the smoothness con-
straints, such as total variation (TV) terms [16] and graph
regularization [17], are proposed to enhance model perfor-
mance for the IC task. Furthermore, some parameter-free
tuning methods, such as hierarchical priors [18, 19], are
proven workable under a fully Bayesian treatment.

The joint priors of low rankness and smoothness were
also researched in various low-rank Tucker models [4, 9, 10].
These methods perform well for the IC task, especially the
recent Tucker decomposition combining the graph regulariza-
tion [4] and the low Tucker rank tensor completion method
with given rank [10]. This work differs from our proposed
E-LRSTD in that the low rankness is exploited using nuclear
norm and sparsity in ARTD [4]. More importantly, a rational
low-rank and sparsity Tucker model combined with local sim-
ilarity has not been thoroughly studied. The main attributes
of our proposed E-LRSTD model and that of several Tucker-
based popular IC methods are listed in Tab. 2.

3. PROPOSED MODEL

We propose a Tucker-based model to consider global and
local information for the IC task. To avoid the highly com-
putational complexity of tensor unfolding and matrix de-
composition in tensor nuclear norm minimization, we use the
weighted factor matrix rank and core tensor sparsity to encode
the global low Tucker rank. We consider graph regularization
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as the smoothness constraint to characterize the local simi-
larity of the image data, which further enhances the model
performance. Furthermore, an LADM-based optimization
algorithm is designed to solve the proposed model.

3.1. Enhanced LRSTD

We focus on low rank and sparsity priors to Tucker decompo-
sition and define the LRSTD model for the IC task as (2)

min
G,U,X

(1− α)
∑N

n=1 wn ∥Un∥∗ + α∥G∥1
s.t., X = G ×N

n=1 Un, XΩ = TΩ.
(2)

Motivated by the local similarity in the image data, we further
introduce the proposed E-LRSTD model as (3)

min
G,U,X

λ
∑N

n=1 ωn ∥Un∥∗ + ∥G∥1 +
∑N

n=1
βn

2 tr
(
UT

nLnUn

)
s.t., X = G ×1 U1 · · · ×N UN , XΩ = TΩ,

λ = 1−α
α , 0 < α ≤ 1

(3)
where the Laplace matrix Ln captures the underlying multi-
modal correlations in the image data. If α = 1, the E-LRSTD
model degrades into an ARTD model.
Remark: Minimizing the factor matrix nuclear norm
in Tucker decomposition is equivalence to minimizing the
unfolding matrix nuclear norm [10]. The Laplacian-based
matrix can be constructed using prior information about
the image. Besides, graph regularization is a kind of sub-
space learning that helps to reveal local similarities [4].

3.2. Optimization

We define the augmented Lagrange function Lµ (. . . ) (4) to
solve model (3)

λ
∑N

n=1 ωn ∥Un∥∗ + ∥G∥1 +
∑N

n=1
βn

2 tr
(
UT

nLnUn

)
+µ

2

∥∥X − G ×N
n=1 Un

∥∥2
F
+
〈
Y,XΩ − G ×N

n=1 Un

〉
(4)

where µ is a positive scalar that adaptively changing, and Y
is the Lagrange multiplier.

Optimization of G. With other parameters fixed, we have

Ĝ = S 1
µLG

(G̃ − 1

LG
∇Gf

(
G̃
)
),

∇Gf(G) = G ×N
n=1 U

T
nUn −

(
X +

Y
µ

)
×N

n=1 U
T
n .

(5)

Optimization of Un. Un is given by (6) with Uj , j ̸= n
and other parameters fixed (wn = λωn).

Ûn = D wn
LUn

(
Ũn − 1

LUn

∇Unf
(
Ũn

))
.

∇Un
f(Un) = µUnG(n)V

T
nVnG

T
(n) + βLnUn

−
(
µX(n) +Y(n)

)
VnG

T
(n),

LUn
=
∥∥∥µG(n)V

T
nVnG

T
(n)

∥∥∥
2
+ ∥βnLn∥2 .

(6)

Remark: In the LADM-based algorithm, we approximate
the smooth function using extrapolated points G̃ and Ũ.
Under the Nesterov accelerated strategy, Algorithm 1
achieves the optimal O(1/k2) convergence rate [20].

Optimization of X .

X̂Ω = TΩ, X̂Ω̄ =

(
Ĝ ×N

n=1 Ûn − Yk

µk

)
Ω̄

. (7)

Updating the multipliers Y .

Yk+1 = Ŷ + µk
(
X̂ − Ĝ ×N

n=1 Ûn

)
,

µk+1 = ρµk, ρ ∈ [1.1, 1.2].
(8)

We conclude the LADM algorithm for the IC in Algorithm 1.
A rigorously theoretical convergence of the LADM algorithm
is difficult to obtain due to the nonconvexity and nonsepara-
bility of Tucker decomposition [17]. Here, we provide the
numerical convergence of the proposed algorithm in Fig. 2.

Algorithm 1 LADM solver for E-LRSTD model
1: Input: Corrupted image T , observed entries Ω.
2: Output: Recovered image X̂ .
3: Initialize: G0, {U0

n} (1 ≤ n ≤ N ), 0 < α ≤ 1;
4: XΩ = TΩ, XΩ̄ = mean(TΩ̄);
5: while k < K do
6: Optimize Gk+1 via (5) with other variables fixed;
7: Optimize all Uk+1

n via (6) with other variables fixed;
8: Optimize X k+1 via (7) with other variables fixed;
9: Update multipliers Y using (8)

10: Update G̃k+1 and Ũk+1
n using acceleration strategy;

11: until
∥∥X k+1 −X k

∥∥
F

∥∥X k
∥∥−1

F
< tol are satisfied.

12: end while
13: return X̂ = XK+1.

4. NUMERICAL EXPERIMENTS

We present the experimental results on real image datasets
to demonstrate the efficiency of the proposed E-LRSTD
model. The code is released at https://github.com/
GongWenwuu/ELRSTD.

Datasets: The color image USC-SIPI 1 and the multi-
spectral image from CAVE 2 database are both resized to 256
× 256 for all spectral bands. The quality of recovery results
is measured by the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM), where higher PSNR and
SSIM values indicate better results.

Implementation details: We randomly sample 10% of
images and initial the Tucker decomposition randomly. The
low rankness parameter is chosen as 0.5 for all images. We

1https://sipi.usc.edu/database/database.php
2https://www.cs.columbia.edu/CAVE/databases/

multispectral/
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then calculate the factor matrix SVD values to deliver {ωn},
which is data-driven. Fig. 2 (left) shows the Root Mean
Square Error (RMSE) curves versus the iteration number of
the Algorithm 1. It can be seen that the RMSE keeps decreas-
ing as the iteration number increases, and the values stabilize
after only about 300 iterations, which implies the proposed
algorithm’s numerical convergence. We also discuss the ef-
ficiency of the proposed method with and without Nesterov
acceleration in Fig 2 (right). Results show that the Nesterov
strategy performs better and speeds up its convergence, espe-
cially for the multispectral image Cloth.
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Fig. 2. Convergence results using Algorithm 1.

Ablation study: We first discuss the effect of the low
rankness compared with Tucker-based SBCD [10], tubal-
based [6], TT-based [13], and matrices-based []. Fig. 3 (left)
shows that LRSTD performs better when sample ratios (SRs)
are lower than 20%. Guided by [4], we determine the parame-
ter {βn} using different mode-n unfolding matrices given the
image tensor. We denote ‘LRSTD1’ (only mode-3 constraint)
to discuss the effect of the graph regularization in terms of
PSNR. The results are shown in Fig. 3 (right), which implies
that the proposed graph regularization is essential for our IC
task.
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Fig. 3. PSNR versus SRs for low rankness and regularization.

Model comparison: We select baseline models, includ-
ing TMac [11], tSVD [6], BCPF [18], TT [13], KBR [8] and
ESP-LRTC [9] to compare the numeric results. Our experi-
ments consider six random missing scenarios: 1%, 3%, 5%,
7%, 10%, and 20%. Fig. 4 and Fig 5 show the comparison re-
sults regarding PSNR and SSIM. It can be seen that E-LRSTD
achieves the best values for all images, further validating the
proposed method’s robustness over all spectral bands. On

the PSNR index, E-LRSTD achieves 0.8 dB improvement for
RGB images and 0.4 dB improvement for Cloth on average.
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Fig. 4. Comparison results of PSNR scores concerning SRs.
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Fig. 5. Comparison results of SSIM values concerning SRs.

5. CONCLUSION

This paper introduces a Tucker-based model combined with
global and local information (E-LRSTD) to address the IC
task. It is demonstrated that the global and local priors are
important in tensor completion. We design an efficient solver
LADM and deduce the closed-form updating rules. Exten-
sive experiments on real-world images show that E-LRSTD
outperforms the others, especially when the missing ratios are
high, i.e. SR ≤ 0.1. For the high computational cost of large-
scale tensors, one can consider the fast Fourier transform to
address this issue [21].
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