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Abstract—Real traffic data is often missing due to diverse inter-
ference. However, uncompleted inputs will weaken the abilities of
intelligent transportation systems. Therefore, it is of great interest
that suitable imputation methods be designed. This paper pro-
poses a low-rank autoregressive Tucker decomposition (LATD)
method by exploring the spatiotemporal correlations embedded
in high-dimensional traffic data. The low-rank factor matrices
and core tensor introduced by the Tucker decomposition allow
us to better characterize the long-term trends of the traffic data.
We incorporate an autoregressive model to extract the short-
term patterns involved. Besides implementing differences between
neighboring elements to promote smoothness, this regularization
is also well interpretable for characterizing the spatiotemporal
correlations. To solve the LATD model, we design a proximal
alternating linear minimization algorithm to update each variable
iteratively. Numerical experiments on two real traffic datasets
indicate that our proposed model outperforms other imputation
methods in achieving higher accuracy.

Index Terms—Traffic data imputation, low rankness, spa-
tiotemporal correlations, Tucker Decomposition, autoregressive
model.

I. INTRODUCTION

With significant advancements in sensor technology, data
measurement instruments offer better spatial coverage and
time precision. For instance, traffic data collected across the
city network records daily vehicle flow and speeds on different
roads. Those extensive traffic datasets offer new possibilities
for intelligent transportation systems, enabling more reliable
applications such as route planning and commute time man-
agement. However, real-world traffic data often suffer from
missing problems due to conversion errors and environmental
obstructions [1]. Therefore, imputing the incomplete traffic
data is essential for improving data quality.

Traffic data from nearby sensors often display similar
regularity due to their proximity, with recurring short-term
patterns over adjacent time points [2]. Understanding these
complex relationships across spatial and temporal dimensions
is crucial [3]. Recently, attention has been paid to the tensor-

based imputation methods, particularly due to the periodic-
ity and seasonality reflected in traffic data. Low rankness
is regarded as a key assumption for capturing those long-
term trends. Meanwhile, traffic data imputation focuses on
exploring spatiotemporal correlations. Strategies like incorpo-
rating total/quadratic variance [4], [5] and graph regulariza-
tion [6] as ‘smooth’ priors have been proposed. However,
those conventional ‘smooth’ priors are difficult to explore
this potential connection. Fortunately, the autoregressive model
has excellent interpretability in characterizing the dependence
between the time series of the road segments. Besides, the
Tucker decomposition effectively incorporates spatiotemporal
prior terms while extracting low rankness from the different
modes of the tensor. Therefore, the low-rank Tucker model
serves as an efficient tool to make a good link between long-
term trends and short-term patterns within traffic data [7], [8].

This paper proposes a novel Low-Rank Autoregressive
Tucker Decomposition (LATD) model for imputing traffic
data. The key contributions are outlined as follows:

• We utilize the Tucker model’s factor matrix and core ten-
sor to represent long-term trends in the traffic data, then
combine the autoregressive model to emphasize short-
term patterns. The imputation capability is enhanced by
describing the spatiotemporal correlations.

• We propose a proximal alternating linear minimization al-
gorithm to solve the nonconvex-nonsmooth optimization
problem and demonstrate the convergence in numerical.

• Extensive experiments are conducted on real-world traffic
datasets, which show that LATD achieves superior accu-
racy compared to several tensor-based imputation models.

II. RELATED WORK

Researchers have proposed tensor imputation methods lever-
aging low rankness to analyze high-dimensional structures
and impute missing traffic data. Those tensor-based methods
efficiently identify global traffic situations to recover missing
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entries from observed data [9]. Xie et al. [10] introduced a
sequential tensor imputation algorithm utilizing a third-order
traffic tensor. Ran et al. [11] employed a fourth-way traffic
flow tensor to capture the overall conditions, resulting in
enhanced performance. Similarly, Wang et al. [12] used the
Hankel operator to capture traffic information in a data-driven
way. However, the performance of low-rank tensor imputation
techniques needs to improve under high-level missing rates,
as they overlook cross-dimensional effects in traffic data [13].

Considering the spatiotemporal correlations of traffic data,
previous studies have shown that combining low-rank as-
sumption with ‘smooth’ priors outperforms other imputation
methods [14]. They can be categorized into two types.

On the one hand, introducing an auxiliary matrix to depict
spatiotemporal correlations in a low-rank tensor decomposition
(LRTD) model has gained widespread adoption. Such as
the factor graph embedding [8], Toeplitz matrix [15], and
Laplacian kernel [16]. Compared with other LRTD methods,
the Tucker model offers a unique advantage in capturing the
spatiotemporal correlations within a subspace [17].

On the other hand, the difference operator of the unfolding
matrix is used to encode spatiotemporal correlations. Pan et
al. [18] presented a unified low-rank and sparse enhanced
Tucker decomposition model. The inherent similarity of the
traffic data is characterized by merging the structured matrix
acting between the tensor modes. Chen et al. [19] developed
a scalable tensor learning model. It uses the unitary transform
matrix to preserve the daily dependency features between the
traffic data. In another work, Chen et al. [20] used truncated
nuclear norm minimization to ensure the global consistency of
the traffic data. With the help of the autoregressive model, the
temporal variation term was designed to explore the similarity
between contiguous elements.

It is worth noting that these methods only stay on the
surface by leveraging the spatiotemporal correlations merely
by designing a regularization term. They fail to thoroughly
explain why such models are constructed in this manner
without integrating the special properties of traffic data.

III. PRELIMINARIES

We present the symbols in Table I and briefly review
some basic concepts. Moreover, we will analyze some of the
unique properties of the traffic data and the specific process
of establishing the LATD model.

A. Notations

We can represent the Tucker decomposition X = G ×1

U1 · · · ×N UN = G ×N
n=1 Un by X(n) = UnG(n)V

T
n ,Vn =

(UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1). It is not difficult to
verify that vec(X ) = (UN ⊗ · · · ⊗Un ⊗ · · · ⊗U1) vec(G) =
⊗1

n=NUn vec(G).
For a given tensor X ∈ RI1×I2×···×IN and observed index

set Ω, we define PΩ(X ) as a projector that keeps the given
nonzero values and maps other values to zero,

PΩ(X ) :=

{
xi1,i2,...,in , if (i1, i2, ..., in) ∈ Ω
0, otherwise.

TABLE I
NOTATIONS

Symbol Description

x, X, X A vector, matrix, and tensor, respectively.
X(n) Mode-n unfolding of tensor X .

xm,[t+1:] A sub-vector containing the last N − t entries of xm.
xm,n (m,n)th entry in X.
Ω, Ω Observed index set and its complement.
×n Mode-n product.
⊗ Kronecker product.

∥ · ∥F Frobenius norm.
∥ · ∥1 ℓ1 norm.
∥ · ∥2 ℓ2 norm.
∥ · ∥∗ Nuclear norm.
⟨·, ·⟩ Inner product.
Sη(x) Shrinkage operator with η in component-wise.
Dη(X) Operator yielding SVD shrinkage with η.

For convenience, we introduce the tensorization opera-
tor Q(·) to implement the folding operation for matrices.
Specifically, a third-order tensor can be generated by X =
Q(Y)∈ RM×I×J . Conversely, the resulting tensor can be
transformed into the original matrix by Y = Q−1(X ) ∈
RM×(IJ), where Q−1(·) denotes the inverse operator.

B. Model Rationality

Traffic data can be represented in the form of “sensor × time
of day × day”. Alongside global low rankness, piece-wise
‘smoothing’ often exist across different dimensions. This is
attributed to dependencies between neighboring data, prompt-
ing the introduction of spatiotemporal prior. By performing
difference operations on the unfolding matrix, we unveil
potential interactions between the modes of the original tensor,
thereby enriching information for traffic data imputation.

Fig. 1. Statistical analysis of the traffic dataset.

When analyzing traffic data, it’s essential to consider its
long-term trends and short-term patterns. Fig. 1-(b) indicates
a sharp drop of singular values at the beginning, signifying
highly concentrated data energy. In Fig. 1-(c), elements are
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distributed around zero, suggesting minimal variances between
neighboring data points. Fig. 1-(a) reveals that the entries
are intricately mixed, with subtle discrepancies due to the
interference of surrounding elements. However, after the first
modal difference operation, the boundaries among each data
cluster become clearer. In Fig. 1-(d-1), distinct vehicle speed
ranges carried on each road segment are easily discernible.
Conversely, applying the second and third modal difference
operations to the original data fails to achieve a similar
processing effect. As shown in Fig. 1-(d-2) and Fig. 1-(d-3),
there is no apparent hierarchy of the data recorded by sensors
in every scene. This implies that the potential spatiotemporal
features that traffic dataset possesses are not currently refined,
so some spatiotemporal priors need to be considered.

Based on our analysis, we use Tucker decomposition to
capture the low-rank prior and emphasize spatiotemporal cor-
relations through an autoregressive model. This construction
improves the model performance by describing the depen-
dency between dimensions. In the following sections, we will
detail the design intent of the LATD model.

C. Low Rankness based on Tucker Decomposition

The Tucker decomposition is a powerful tool for revealing
low-rank priors in multidimensional traffic data. It efficiently
captures global low rankness while preserving the tensor
structure without needing a predefined rank. We utilize the
nuclear norm of the factor matrices and the ℓ1 norm of the
core tensor for relaxation.

min
G,{Un}

(1− α)

N∏
n=1

∥Un∥∗ + α∥G∥1

s.t., X = G ×N
n=1 Un, 0 < α < 1.

Specifically, when tensor X exhibits low-rank, its core
tensor G is expected to be sparse or {Un} forms a collection
of low-rank matrices. Since it is more difficult to solve the
product function term that represents the block size of the
core tensor, we use the adaptive weighted factor matrix nuclear
norm summation term instead.

D. Spatiotemporal Correlations

‘Smoothness’ in the tensor structure is reflected through its
unfolding matrix along the specific modes. The autoregressive
model, constructed using prior traffic information, maintains
spatiotemporal correlations effectively. In this paper, we de-
pict the spatiotemporal dependence of the traffic dataset by
computing the difference between neighboring elements and
taking the ℓ2 norm to preserve it. Given a set of time lags
H = {h1, . . . , hd}, the spatiotemporal regularization based on
the autoregressive model can be expressed as

∥Z∥A,H =
∑
m,t

(zm,t −
∑
i

am,izm,t−hi
)2, Z = Q−1(X ).

In practice, the tensor is unfolded to separate temporal and
spatial information. This guarantees that each column of the
resulting matrix represents a complete time series recorded
for a specific road segment. The corresponding spatiotemporal

relevance of the traffic dataset is then measured through the
suitable autoregressive coefficient matrix. It is worth noting
that A is also a variable that needs to be updated.

IV. METHODOLOGY

A. Proposed Model

The proposed LATD model is defined as

min
G,{Un},X ,Z,A

(1− α)

N∑
n=1

ωn ∥Un∥∗ + α∥G∥1 +
γ

2
∥Z∥A,H

s.t., X = G ×N
n=1 Un,X = Q(Z),

PΩ(X ) = PΩ(Y)
(1)

where 0 < α < 1, ωn =
∏3

i=1,i̸=n
1
Ri

, Ri =
∑

σ (Ui), and
Y is the partially observed tensor. The parameter γ controls
the trade-off between the low-rank term and spatiotemporal
regularization.

B. Proposed Algorithm

To solve the above problem, we first penalize the two
constraints in (1), where β and ρ are the weight parameters
of the introduced penalty.

min
G,{Un},X ,Z,A

(1− α)

N∑
n=1

ωn ∥Un∥∗ + α∥G∥1 +
γ

2
∥Z∥A,H

+
β

2

∥∥X − G ×N
n=1 Un

∥∥2
F
+

ρ

2
∥X −Q(Z)∥2F

s.t., PΩ(X ) = PΩ(Y)
(2)

Since (2) is a nonconvex-nonsmooth problem, we use the
proximal alternating linear minimization method. Specifically,
its solution process will be decomposed into the following
subproblems.

Optimization of G. We use the proximal gradient method
to update the core tensor G based on a vectorized form:

Ĝ = argmin
G

α ∥G∥1 +
β

2

∥∥vec(X )− (⊗1
n=NUn) vec(G)

∥∥2
F

≈ argmin
G

α ∥G∥1 + ⟨G − G̃,∇Gf
(
G̃
)
⟩+ LG

2

∥∥∥G − G̃
∥∥∥2
F

= S α
LG

(
G̃ − 1

LG
∇Gf

(
G̃
))

.

(3)
The corresponding gradient and Lipschitz constant are

∇Gf(G) = β
(
G ×N

n=1 U
T
nUn −X ×N

n=1 U
T
n

)
,

LG = β

N∏
n=1

∥∥UT
nUn

∥∥
2
.

G̃ is updated by

G̃k = Gk + ηk
(
Gk − Gk−1

)
, for k ≥ 1

with the updated step size ηk

ηk =
tk−1 − 1

tk
, tk =

1 +
√

4(tk−1)2 + 1

2
, for k ≥ 1, t0 = 1.
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Optimization of Un, n = 1, . . . , N . We perform mode-n
unfolding of the given objective tensor to get the hidden factor
matrix Un subproblem:

Ûn = argmin
Un

(1− α)ωn ∥Un∥∗ +
β

2

∥∥X(n) −UnG(n)V
T
n

∥∥2
F

≈ argmin
Un

(1− α)ωn ∥Un∥∗ + ⟨Un − Ũn,∇Un
f
(
Ũn

)
⟩

+
LUn

2

∥∥∥Un − Ũn

∥∥∥2
F

= D (1−α)ωn
LUn

(
Ũn − 1

LUn

∇Un
f
(
Ũn

))
,

(4)
where

Vn = (UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1).

The corresponding gradient and Lipschitz constant are

∇Un
f(Un) = β

(
UnG(n)V

T
nVnG

T
(n) −X(n)VnG

T
(n)

)
,

LUn = β
∥∥∥G(n)V

T
nVnG

T
(n)

∥∥∥
2
.

Ũn is updated by

Ũk
n = Uk

n + ηk
(
Uk

n −Uk−1
n

)
, for k ≥ 1.

Optimization of Z. We can rewrite the original problem
with respect to Z as (5):

Ẑ = argmin
Z

γ

2
∥Z∥A,H +

ρ

2

∥∥Z−Q−1(X )
∥∥2
F

= argmin
Z

∑
m

[γ
2

∥∥Ψ0zm −
∑
i

am,iΨizm

∥∥2
2

+
ρ

2

∥∥zm −Q−1
m (X )

∥∥2
2

]
.

(5)

The closed-form solution is given by

ẑm =
ρ

γ

(
BT

mBm +
ρ

γ
I

)−1

· Q−1
m (X ), m = 1, . . . ,M, (6)

where

Bm = Ψ0 −
∑
i

am,iΨi, m = 1, . . . ,M,

and

Ψ0 =
[
0(T−hd)×hd

IT−hd

]
,

Ψi =
[
0(T−hd)×(hd−hi) IT−hd

0(T−hd)×hi

]
, i = 1, 2, . . . , d,

I = [Ψ1 Ψ2 · · ·Ψd ]

are matrices defined based on time lag set H = {h1, . . . , hd}.
Optimization of X . The optimal solution X follows

X̂Ω̄ = argmin
X

β

2

∥∥X − G ×3
n=1 Un

∥∥2
F
+

ρ

2
∥X −Q(Z)∥2F

=

[
1

β + ρ

(
βG ×3

n=1 Un + ρQ(Z)
)]

Ω̄

, X̂Ω = YΩ.

(7)

Optimization of A. we solve the following (8):

Â = argmin
A

∑
m,t

(zm,t −
∑
i

am,izm,t−hi
)2

= argmin
A

∑
m

∥∥zm,[hd+1:] −Vmam

∥∥2
2
,

(8)

where

Vm = (vhd+1, · · · ,vT )
T
, m = 1, . . . ,M,

vt = (zm,t−h1 , · · · , zm,t−hd
)T, t = hd + 1, . . . , T.

It has a closed-form solution, which is given by

âm = V†
mzm,[hd+1:], m = 1, . . . ,M, (9)

where ·† denotes the Moore-Penrose pseudo-inverse.
The proposed algorithm for LATD can be summarized in

Algorithm 1. If the convergence condition is satisfied, the
algorithm returns X̂ as the final result.

Algorithm 1: PALM-based LATD
Input : Missing tensor Y , observed index set Ω.
Output: Recovered tensor X̂ .

1 Initialize: G0, {U0
n} (1 ≤ n ≤ N ), 0 < α < 1,

β = ρ = 1, γ = min{β, ρ}, s = 1;
2 repeat
3 for k = 0 to K − 1 do
4 Update Gs+1,k+1 using (3).
5 for n = 1 to N do
6 Update Us+1,k+1

n using (4).
7 end
8 for m = 1 to M do
9 Update zs+1,k+1

m using (6).
10 end
11 Update X s+1,k+1 using (7).
12 end
13 for m = 1 to M do
14 Update as+1

m using (9).
15 end
16 s=s+1;
17 until

∥∥X s+1,K −X s,K
∥∥
F

∥∥X s,K
∥∥−1

F
< ϵ;

V. EXPERIMENTS

This section presents the numerical experiments conducted
on two real traffic datasets. The results demonstrate that the
LATD model outperforms several state-of-the-art methods.

A. Traffic Datasets

• Guangzhou urban traffic speed dataset.1 This dataset
contains the 10-minute resolution of traffic speed col-
lected from 214 road segments in Guangzhou, China, over
one week, and is 214× 144× 7 in size.

1https://doi.org/10.5281/zenodo.1205229
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• Hangzhou metro passenger flow dataset.2 This dataset
provides a 10-minute resolution of inbound passenger
flow at 80 subway stations in Hangzhou, China, over one
week. We exclude the time interval (6 hours) in which
there is no service at a fixed time of the day, and the
retained portion is 80× 108× 7 in size.

B. Experimental Settings

Missing scenario. For verifying the effectiveness of the
LATD model, we primarily focus on the random missing
scenario where the missing data are uniformly distributed.
Following this mechanism, we mask the index set Ω and use
the remaining observations as model input.

Evaluation indicators. To ensure a standardized criterion
for comparing imputation performance, we utilize mean abso-
lute percentage error (MAPE) and normalized mean absolute
error (NMAE) as evaluation indicators:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100,

NMAE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|
,

where yi and ŷi are actual and imputed values, respectively.
Baseline models. For comparison, some state-of-the-art

imputation methods for traffic data have been selected: LATC,
LSTC, STRTD, LRSETD, stTT, and STH-LRTC, to show the
superiority of our model. All the contrast methods integrate
low-rank term and spatiotemporal regularization, consistent
with the basic structure of the LATD model. Their main
properties are listed in Table II.

TABLE II
SOME EXISTING TRAFFIC DATA IMPUTATION METHODS

Methods Types of the prior StructuresLow rankness Spatial Temporal

LATD ✓ ✓ 3rd tensor
LATC [20] ✓ ✓ 3rd tensor
LSTC [19] ✓ ✓ 3rd tensor
STRTD [8] ✓ ✓ ✓ 3rd tensor

LRSETD [18] ✓ ✓ ✓ 3rd tensor
stTT [15] ✓ ✓ ✓ 3rd tensor

STH-LRTC [12] ✓ ✓ ✓ 4th tensor

Parameters selection. In LATD model, five parameters
need to be tuned. They are α, β related to the low-rank
term, γ, ρ controlling the spatiotemporal regularization, and
the set of time lag H. From practice, the ratio of the two
pairs of parameters α to β and ρ to γ plays a key role in the
model. We conducted preliminary tests on the selection of the
above parameters and finally decided on the following choices:{
α = 0.8, β = 1.6, ρ = 20−15, γ = 2

}
for the first dataset

and
{
α = 0.1, β = 0.001, ρ = 10−16, γ = 10−5

}
for the

second. In both experiments H was set to {1, 2, . . . , 6}. For
better model comparison, the termination condition of all

2https://tianchi.aliyun.com/competition/entrance/231708/information
We only select data from the first week of the original dataset.

experiments was set to tol = 10−5, and the maximum number
of iterations was 300. The parameters of the baseline were
chosen by optimal assignment.

C. Results

Table III shows the overall imputation performance of
LATD and baseline models on two specific traffic datasets,
where the best results are bolded. For the G and H datasets, we
plot the MAPE values and NMAE values for different missing
rates in Fig. 2. It should be noted that we have omitted some
points with unusual values from the figure.

The results show that LATD outperforms other models ex-
cept for the case of extremely high deficiency in the dataset G.
Even when the missing rate is 97%, LATD exhibits suboptimal
imputation performance. This suggests combining short-term
and long-term trends would benefit traffic data imputation.

Fig. 2. Performance comparison in terms of MAPE values (left) and NMAE
values (right) with different missing rates for G (upper) and H (lower) datasets.

VI. CONCLUSION

The proposed LATD model leverages the long-term trends
and short-term patterns in traffic data to impute missing
entries. By the Tucker decomposition, LATD captures the
inherent low rankness utilizing weighted factor matrix nu-
clear norm and core tensor sparsity. LATD integrates an
autoregressive model to explore spatiotemporal correlations
by differencing neighboring elements. Experimental results on
real traffic datasets validate the superiority of LATD, showing
higher accuracy compared to other state-of-the-art methods.

There are still some limitations to our model. For simplicity,
it is assumed that each component obeys an independent
autoregressive model and ignores the mutual influences that
may be implied between them. In the future, we can continue
to construct new models based on tensor representations by
introducing time variation into the classical idea of spatial
imputation method.
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TABLE III
PERFORMANCE COMPARISON OF LATD AND BASELINE MODELS

Dataset Missing Rate LATD LATC LSTC STRTD LRSETD stTT STH-LRTC

30% 1.8251 5.4187 5.3787 7.4668 8.9087 10.8340 6.1564
50% 3.3913 6.0129 5.9502 8.1463 9.6923 11.0070 6.8428

(G)-MAPE 70% 5.3624 6.9227 6.9144 8.8558 10.5840 11.0540 7.9906
90% 8.8714 9.3191 9.7448 10.6005 11.9931 11.3639 11.2653
97% 12.9962 36.2762 13.1013 14.2247 16.3794 15.0146 20.8861

30% 0.0146 0.0438 0.0437 0.0566 0.0660 0.0775 0.0475
50% 0.0271 0.0475 0.0473 0.0600 0.0705 0.0781 0.0518

(G)-NMAE 70% 0.0416 0.0539 0.0536 0.0647 0.0767 0.0788 0.0601
90% 0.0654 0.0696 0.0714 0.0764 0.0860 0.0820 0.0855
97% 0.0975 0.3644 0.0973 0.1014 0.1336 0.1105 0.1621

30% 8.6480 21.6605 31.8677 20.5789 27.8822 24.9918 30.3576
50% 13.4345 23.6602 39.9123 21.7194 31.0080 25.5648 34.8166

(H)-MAPE 70% 17.7279 26.1652 54.2691 22.2156 34.6403 28.0127 42.3733
90% 25.2299 34.8887 103.1330 29.2018 50.8457 72.3720 69.6340
97% 47.0237 57.1542 131.9420 54.9850 90.0668 192.2020 130.9310

30% 0.0476 0.1193 0.1386 0.1189 0.2113 0.1394 0.1354
50% 0.0719 0.1287 0.1515 0.1256 0.2388 0.1526 0.1491

(H)-NMAE 70% 0.0994 0.1420 0.1842 0.1350 0.2610 0.1730 0.1732
90% 0.1604 0.1793 0.2768 0.1850 0.3182 0.3672 0.2741
97% 0.2955 0.3547 0.4075 0.3115 0.3783 0.5514 0.4980
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