
Low-Rank Bi-directional Neighbor Tucker Decomposition for Traffic Data Imputation1
2

Jiaxin Lu3
Department of Statistics and Data Science4
Southern University of Science and Technology, Shenzhen, China, 5180555
Email: 12332881@mail.sustech.edu.cn6

7
Wenwu Gong8
Department of Statistics and Data Science9
Southern University of Science and Technology, Shenzhen, China, 51805510
Email: 12031299@mail.sustech.edu.cn11

12
Lili Yang (Corresponding Author)13
Department of Statistics and Data Science14
Southern University of Science and Technology, Shenzhen, China, 51805515
Email: yangll@sustech.edu.cn16

17
Word Count: 5,834 words + 4 table (250 words per table) = 6,834 words18

19
20

Submitted [November 28, 2024]21
22



Lu, Gong, and Yang

2

ABSTRACT1
Modern sensors collect a large amount of spatiotemporal traffic data, which is crucial for understanding2
urban traffic patterns and improving daily commute efficiency. However, environmental noise often leads3
to data loss, undermining the effectiveness of intelligent transportation systems. Therefore, imputing4
missing traffic data to maintain preprocessing reliability becomes essential. The challenge lies in5
effectively modeling complex spatiotemporal relationships. Existing tensor-based methods have yet to6
fully exploit the unique properties of spatiotemporal traffic data, resulting in limited interpretability.7
We propose a low-rank bi-directional neighbor Tucker decomposition (LBNTD) method to address this8
issue. This method leverages the data's self-correlation and incorporates bidirectional neighbor9
combinations to reveal hidden spatiotemporal features. By iteratively adjusting a learnable weight matrix,10
LBNTD can accommodate data heterogeneity, providing a solid foundation for its application. We11
develop a proximal alternating linear minimization algorithm to solve the LBNTD model. Numerical12
experiments on two real-world traffic datasets demonstrate that the LBNTD method significantly13
outperforms other baseline models.14
Keywords: Traffic data imputation, self-correlation, heterogeneity, spatiotemporal feature, Tucker15
decomposition, bi-directional neighbor combination16
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INTRODUCTION1
Spatiotemporal (ST) data are widely utilized in the real world, providing valuable insights into2

the behavior of complex systems. In transportation scenarios, ST data collected from modern sensors are3
crucial for monitoring traffic conditions and devising traffic operation strategies (1). However, equipment4
failures and communication issues often hinder data acquisition, resulting in unavoidable loss (2). These5
gaps can significantly impair the performance of intelligent transportation systems. Consequently, there is6
a great need to impute missing elements to improve data availability.7

ST data exhibit two features: self-correlation and heterogeneity (3). Firstly, measurements in8
neighboring coordinates are not independent but are contextually connected. For example, traffic flows9
observed at nearby locations often display similar trends, and data fluctuations within a specific range10
tend to be smoother. Secondly, ST data exhibit different patterns across regions and periods, such as the11
traffic conditions on weekdays and weekends and in city centers and suburbs, which tend to differ12
significantly. Figure 1 visualizes a sample of 20 days and 20 road sections from the Guangzhou urban13
speed dataset, highlighting the presence of these two qualities. Specifically, traffic status both upstream14
and downstream will mutually influence each other, alongside the travel behaviors that emerge on15
specific dates. Moreover, the traffic situations on different road sections within the city, as well as during16
different days of the week, clearly demonstrate local diversity.17

18

19
20

Figure 1 Visualisation of spatiotemporal data features.21
22

Traditional imputation methods, such as KNN (4) and Cokriging (5), neglect the intrinsic23
spatiotemporal features of traffic data and result in poor capability (6). Since the multilayer structure of24
tensors can make the data more comprehensive, tensors tend to be used to present ST data (7). It is25
important to note that most existing models provide only a superficial framework for exploring the26
interactions between constituents in ST data. They fail to deeply investigate the connections between27
nodes across time and space, making them unsuitable for implementation in urban traffic situations28
characterized by diverse layouts and fluctuating states (8). In other words, there are short and long range29
impacts between sites, which lead to differences in the corresponding transport routes due to various30
regional functions. We propose a novel Low-rank Bi-directional Neighbor Tucker Decomposition31
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(LBNTD) model to fully leverage the spatiotemporal features in traffic data. It assumes that each missing1
element is represented by a linear combination of the surrounding elements (9). Unlike most methods that2
create a static weight matrix for spatiotemporal information metric (10), the proposed LBNTD model3
integrates the weight determination into the overall optimization algorithm and updates the weights4
iteratively. This dynamic approach allows spatiotemporal modeling in an inductive learning way, dealing5
with the heterogeneity of the ST data. The contributions of this paper are as follows:6
 We depict the self-correlation of traffic data using Tucker decomposition, and exploit the hidden7

spatiotemporal features with bi-directional neighbors. The proposed LBNTD model yields a8
learnable weight matrix that fits different traffic datasets.9

 We propose a proximal alternating linear minimization algorithm to solve non-convex10
optimization problems and discuss its numerical convergence.11

 Extensive numerical experiments on two real-world traffic datasets demonstrate the superior12
performance of the LBNTD model compared to other state-of-the-art models.13

14
RELATED WORK15

In this section, we review contemporary imputation methods for spatiotemporal traffic data,16
organizing the discussion around two commonly used data representation tools. We primarily focus on17
the tensor-based approaches, outlining relevant techniques for mining spatiotemporal features and18
discerning their effectiveness.19

Firstly, it is widely recognized that traffic data is directly described in matrix form. Su et al. (11)20
integrated the spatial information of the road network with the original traffic data matrix and employed a21
latent factor model-based algorithm to impute missing data in the combined matrix. Chen et al. (12)22
introduced an ensemble low-rank matrix completion method, which constructs a distance matrix to select23
the most similar samples for the filling via KNN search. However, they only capture spatiotemporal24
features in two dimensions, leading to insufficient precision and lack of scalability (13).25

In contrast, tensor allows the inclusion of three or more dimensions, thereby preserving richer26
data characteristics (14). Wang et al. (15) transformed the raw data into a fourth-order Hankel tensor.27
They approximated the tensor rank by balancing the truncated nuclear norms of the spatiotemporal28
expansions. Ran et al. (16) proposed a traffic flow data fusion method that reconstructs the data in a four-29
way tensor model, fully utilizing spatiotemporal information from upstream and downstream detectors to30
improve estimation. With the help of tensors, many attempts to model spatiotemporal features in traffic31
data have gradually been derived (17).32

Some research extracts spatiotemporal features by exploring the inherent correlation within traffic33
data. Wu et al. (18) discovered the nonlocal self-similarity prior in traffic data and proposed a34
corresponding spatiotemporal imputation method. They used tensor ring decomposition to depict the35
global low-rankness. Chen et al. (19) introduced a collaborative non-convex low-rank tensor completion36
model that delves into the intrinsic structure of traffic data. Multidimensional correlations and detailed37
spatiotemporal dependency are inscribed using an elastic net self-representation method. These methods38
show enhanced performance but do not clearly explain the rationale behind modeling spatiotemporal39
features in this particular way.40

Meanwhile, other studies maintain better interpretability when encoding spatiotemporal features.41
Zhao et al. (20) introduced a spatiotemporal constrained low-rank tensor completion method using42
manifold embedding based on traffic flow's continuity, periodicity, and transmission mechanisms. This43
approach effectively utilizes the traffic tensor's global and local linkages. However, the decision degree44
between elements, as defined by these methods, is fixed from the start, discouraging the flexibility needed45
to uncover the internal rules of different datasets. Zhang et al. (21) developed a tensor-weighted Schatten-46
p norm model with neighbor regularization that preserves rank components of traffic data by assigning47
variable weights to the tensorial and decomposed mode dimension. It also mines the spatial consistency of48
the traffic network by utilizing the contributions of passenger flows. Nevertheless, solving for the weight49
matrices is cumbersome and involves executing specific deletion operations without the possibility of50
deriving a uniform closed-form solution.51
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Our proposed model overcomes the above deficiencies. It uses traffic data's self-correlation to1
construct a spatiotemporal regularization and elaborates on the underlying concepts. Moreover, a2
specialized algorithm has been developed to compute a learnable weight matrix, effectively managing3
traffic data heterogeneity.4

5
NOTATIONS6

In this paper, we adopt the following symbols for clarity. The mode-� unfolding of a tensor � is7
denoted by �(�) . We represent the (�, �)-th entry in a matrix � as ��,� . The observed index set and its8
complement are denoted by � and � . The mode-� product is represented by ×� , while the Kronecker9
product is denoted by ⊗. Norms are expressed as follows: the Frobenius norm by ∙ � , the ℓ1 norm by10
∙ 1 , and the ℓ2 norm by ∙ 2 , the nuclear norm is denoted by ∙ ∗ . Moreover, the inner product is11
expressed as ⟨ ⋅ , ⋅ ⟩ . The soft-thresholding operator (22) with � is denoted by ��( ⋅ ), while the singular12
value shrinkage operator (23) with � is represented by ��( ∙ ).13

For a third-order tensor � ∈ ℝI×J×K , we define the projection operator �Ω(�) , where �Ω(�)14
equals xi,j,k if (i, j, k) ∈ Ω and 0 otherwise. Then, we introduce the tensorization operator �( ⋅ ). Through it,15
� is generated from a matrix Y as � = �(Y). The inverse operation, �−1( ⋅ ), converts � back into the16
original matrix Y , resulting in Y = �−1(�) in ℝM×(IJ) . Let T represent the product of all dimensions17
except the first. The Tucker decomposition can be expressed as � = �×1�1⋯×N�N = �×n=1

N �� . This18
can be equivalently written as �(�) = ���(�)��

T , where �� = �� ⊗ ⋯ ⊗ ��+1 ⊗ ��−1 ⊗ ⋯ ⊗ �1 . It19
can be readily verified that vec(�) = (�� ⊗ ⋯ ⊗ �� ⊗ ⋯ ⊗ �1)vec(�) = (⊗n=N

1 ��)vec(�).20
��ℎ��'� � is a widely used metric for assessing between-group differences, measuring the degree21

of change in a variable. Its computational formula is d = (X�1 − X�2)/s, where ��1 and ��2 are the respective22
sample means for the two groups, s denotes the overall standard deviation of the two groups.23

24
METHODOLOGY25

In this section, we first present the construction principles of the low-rank bi-directional neighbor26
Tucker decomposition (LBNTD) model based on its intended purpose. Next, we propose a specific27
optimization algorithm to address the target problem and provide the relevant theoretical derivation.28

29
Proposed Model30

Since the tensor is an ideal representation of high-dimensional spatiotemporal data (24), we31
format the original traffic data as a third-order tensor of "sensor × time intervals × day." We assume that32
the tensor is restricted to be of low rank (25), which naturally leads to clustering of the data. We use33
Tucker decomposition to strengthen the commonality between dimensions by mining the cross-influence34
of the core tensor with the individual factor matrices (26).35

Due to the self-correlation within the ST data, we consider using neighboring node information to36
guide imputation. Therefore, the missing elements are expressed through bi-directional neighbor37
combinations. Empirically, we give a set of neighbor metrics ℛ = {�1, ⋯, ��}, where the value of �� is a38
positive integer indicating corresponding unit distances. Relying on the idea of bi-directional neighbors,39
we construct a spatiotemporal regularization:40

41

� �,ℛ = �,� ��,� − � ��,���+��,�� − � ��,���−��,��
2

� ,42
43

where � is the weight matrix that can be learned and responds to the heterogeneity of ST data.44
The low-rank bi-directional neighbor Tucker decomposition (LBNTD) model is designed as45

46

min
�,{��},�,�,�

(1 − �) �=1
� ��� �� ∗ + � � 1 + �

2
� �,ℛ s. t. , � = � ×

�

�=1
��,  � = �(�),  ��(�) = ��(�)47

(1)48
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where 0 < � < 1, �� = �=1,�≠�
3 1 ��� , �� = ��(��). The tensor � represents the observed data, and � is1

used to balance the low-rank term and spatiotemporal regularization.2
It is necessary to state that the dataset studied in this paper is not yet anisotropic. Therefore,3

elements distributed at equal distances in both directions have the same contributions for center position.4
5

Proposed Algorithm6
To solve this problem, we begin by imposing penalties to the two constraints specified in7

Equation 1. Here, � and � serve as the corresponding parameters.8
9

min
�,{��},�,�,�

(1 − �) �=1
� ��� �� ∗ + � ∥ �∥1 + �

2
∥ �∥�,ℛ + �

2
� − � ×

�

�=1
�� F

2 + �
2

∥ � − �(�)∥F
2

s. t. ,  ��(�) = ��(�)
(2)10

11
We utilize the proximal alternating linear minimization method to find a solution for Equation 2,12

which involves breaking down the solution process into several subproblems and taking an approximation13
strategy for some of them.14

15
Optimization of �, {��}, � = 1, …, �.16

To get the core tensor �, we use the proximal gradient method in its vectorized form:17
18

�� = argmin
�

 � � 1 + �
2

vec(�) − ( ⊗
1

�=�
��)vec(�) F

2 

≈ argmin
�

 � � 1 + ⟨� − ��, ��� �� ⟩ + ��

2
� − �� F

2 

= � �
��

�� − 1
��

��� �� .

(3)19

20
The gradient and Lipschitz constant are given by21

22

���(�) = � � ×
�

�=1
��

T�� − � ×
�

�=1
��

T ,  �� = � �=1
� ��

T�� 2� .23
24

To obtain the hidden factor matrix ��, we perform mode-n unfolding operation:25
26

��� = argmin
��

 (1 − �)�� �� ∗ + �
2

�(�) − ���(�)��
T

F
2 

≈ argmin
��

 (1 − �)�� �� ∗ + ⟨�� − ���, ���� ��� ⟩ + ���
2

�� − ��� F
2

= �(1−�)��
���

��� − 1
���

���� ��� ,

(4)27

28
The gradient and Lipschitz constant are given by29

30
����(��) = � ���(�)��

T���(�)
T − �(�)���(�)

T ,  ��� = � �(�)��
T���(�)

T
2.31

32
We update �� and ��� by ��� = �� + �� �� − ��−1 ,  ���

� = ��
� + �� ��

� − ��
�−1 , for � ≥ 1, where33

�� = ��−1−1
�� ,  �� = 1+ 4(��−1)2+1

2
,  �0 = 1.34

35
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Optimization of �.1
The original problem can be reformulated in terms of � as shown in Equation 5:2

3
�� = argmin

�
  �
2

� �,ℛ + �
2

� − �−1(�) �
2  

= argmin
�

  �
​ [� �

2
�0�� − � ��,������ 2

2 + �
2

�� − ��
−1(�) 2

2].
(5)4

5
By introducing some simple notation, we can express a closed-form solution to this problem:6

7

��� = �
�

��
T �� + �

�
�

−1
⋅ ��

−1(�), � = 1, …, �, (6)8

9
where �� = �0 − � ��,�(��

− + ��
+)� , � = 1, …, �10

11
with �0 = �(�−2��)×����−2���(�−2��)×�� ,12

��
− = �(�−2��)×(��−��) ��−2�� �(�−2��)×(��+��) ,13

��
+ = �(�−2��)×(��+��) ��−2�� �(�−2��)×(��−��) .14

15
They are defined based on neighbor set ℛ = {�1, ⋯, ��}.16

17
Optimization of �.18

Integrating the known constraints allows us to present the comprehensive form of the result:19
20

�� �� = argmin
�

  �
2

� − � ×
N

�=1
�� F

2 + �
2

∥ � − �(�)∥F
2 = 1

�+�
�� ×

N

�=1
�� + ��(�)

��
,  �� � = ��. (7)21

22
Optimization of �.23

Finally, the weight matrix is obtained using Equation 8 below. Converting the original format into24
vectorized form will simplify the solution:25

26

�� = argmin
�

  �,�
​ (� ��,� − � ��,���+��,�� − � ��,���−��,�� )2 = argmin

�
  � �0,� − ��

−�� − ��
+�� 2

2� ,27

(8)28

where ��
− = �1+��

− , ⋯, ��−��
− T,29

��
+ = �1+��

+ , ⋯, ��−��
+ T,30

��
− = (��−�1,�, ⋯, ��−��,�)T,  31

��
+ = (��+�1,�, ⋯, ��+��,�)T, � = 1 + ��, …, � − ��.32

33
The solution can be explicitly determined using the following expression:34

35
��� = (��

− + ��
+)†�0,�, � = 1, …, �, (9)36

37
where ⋅† denotes the Moore-Penrose pseudo-inverse, �0,� = (�1+��,�, ⋯, ��−��,�)T, � = 1, …, �.38

It is important to note that our algorithm features both an inner and an outer loop. Initially, the39
weight matrix is fixed to solve for the other variables, followed by a return to update itself.40
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The whole algorithm for LBNTD is detailed in Algorithm 1 and yields �� as the estimation result.1
2

3

4
EXPERIMENTS5

In this section, we assess the performance of the proposed model through experiments conducted6
on several real-world traffic datasets.7

8
Traffic Datasets9

 Guangzhou Urban Traffic Speed Dataset, denoted by the symbol G.10
It consists of traffic speed data collected at 10-minute intervals from 214 road segments in11
Guangzhou, China. The dataset has dimensions of 214 × 144 × 7.12
(https://doi.org/10.5281/zenodo.1205229)13

 Hangzhou Metro Passenger Flow Dataset, denoted by the symbol H.14
It records inbound passenger flow data at 10-minute intervals for 80 subway stations in Hangzhou,15
China. The 6 hours per day of unserved phases have been removed. The resulting dataset16
dimensions are 80 × 108 × 7.17
(https://tianchi.aliyun.com/competition/entrance/231708/information)18

19
Experimental Settings20

To test the efficiency of the LBNTD model, we consider a scenario where missing data is21
randomly distributed. Besides, mean absolute percentage error (MAPE) and normalized mean absolute22
error (NMAE) were used as metrics:23

MAPE = 1
� �=1

� ��−���
��

� × 100,  NMAE = �=1
� |� ��−���|

�=1
� |� ��|

,24

where �� and �� � are real and imputed values, respectively.25
To demonstrate the superiority of our model, we compared it with several imputation methods:26

ECLRMC, STRTD, LRSETD, stTT, and STH-LRTC. Both of them have a low-rank term and a27
spatiotemporal regularization. Their main characteristics are detailed in Table 1.28

29
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TABLE 1 Some Existing Traffic Data Imputation Methods1

Methods Types of the prior StructuresLow rankness Spatial Temporal
ECLRMC (12) √ √ matrix

LBNTD √ √ 3rd tensor
STRTD (17) √ √ √ 3rd tensor
LRSETD (14) √ √ √ 3rd tensor
stTT (13) √ √ √ 3rd tensor

STH-LRTC (15) √ √ √ 4th tensor
2

The LBNTD model involves hyperparameters tuning. Extensive numerical results show the3
parameters for the first dataset to be � = 0.98, � = 0.08, � = 10−14, � = 10−6 , ℛ = 1,2, ⋯, 6 .4
Whereas for the second dataset, let � = 0.99,  � = 0.0004,  � = 20−12,  � = 20−7 , ℛ = 1,2, ⋯, 7 .5

We set the termination condition uniformly to tol = 10−5 and limit the maximum number of6
iterations to 300 for all experiments. We also configure the parameters for the comparison models7
according to the descriptions in the reference paper.8

9
Results and Discussion10

To begin, we focused solely on the terms characterizing low-rankness in each model compared,11
illustrating how two data structures — the matrix and the third-order tensor — impact the models’12
capability. It is important to note that the fourth-order tensor was excluded from this experiment because13
it inherently integrates spatiotemporal information during its generation. From Figure 2, we can find that14
the model based on the third-order tensor consistently achieves much lower errors. This suggests that the15
third-order tensor captures more detailed traffic data and confirms that self-correlation can effectively be16
used for completion.17

18

19
20

Figure 2 Dimensional effects of dataset H21
22

Next, we display the performance changes in the proposed model before and after introducing the23
spatiotemporal prior by plotting the graphs. Figure 3 indicates that the spatiotemporal regularization24
indeed plays a role in imputing missing elements. The calculation of ��ℎ��'� � yields an effect size of25
roughly 0.3, suggesting that the introduction of the prior can contribute to data completion to some extent.26

27
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1
2

Figure 3 Impact testing of spatiotemporal prior in dataset H3
4

We also present a heatmap of the weight matrix for a specific case in Figure 4, revealing that5
columns at odd positions predominantly take positive values, whereas columns at even positions tend6
towards negative values, suggesting interactions between segments. It is also noted that the nearest7
segments typically exhibit a facilitative effects, while the furthest segments are more inclined to inhibit8
each other, reflecting the heterogeneity of the spatiotemporal data.9

10

11
12

Figure 4 Visualisation of weight matrix under 20% missing dataset G13
14

The imputation performance of LBNTD compared to several baseline models on two traffic15
datasets is summarized in Table 2, with the best results highlighted in bold. Figure 5 illustrates the16
MAPE and NMAE values across different missing rates. The findings indicate that the LBNTD is17
superior to other models, delivering the highest imputation precision under the given missing conditions.18

19
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TABLE 2 Performance Comparison of LBNTD and Baseline Models1

Dataset Missing LBNTD ECLRMC STRTD LRSETD stTT STH-LRTC
20% 1.4146 10.2601 7.2531 8.5893 10.8666 5.9454

(G)-MAPE 40% 3.0684 10.9905 7.8542 9.3302 10.9796 6.4935
60% 4.9221 12.8423 8.3822 10.0502 10.9232 7.2259
80% 7.6427 15.0101 9.3750 11.0326 11.1064 8.9860
20% 0.0112 0.0743 0.0553 0.0640 0.0774 0.0460

(G)-NMAE 40% 0.0237 0.0830 0.0587 0.0686 0.0780 0.0495
60% 0.0375 0.1036 0.0621 0.0732 0.0782 0.0549
80% 0.0569 0.1272 0.0684 0.0801 0.0788 0.0674
20% 7.3002 37.2798 19.9549 27.5051 27.9337 31.3135

(H)-MAPE 40% 11.5988 37.2128 21.0797 28.8972 26.0291 30.1205
60% 15.8487 40.1555 22.4406 33.2615 30.5960 38.2953
80% 23.9022 45.2961 24.5118 38.9334 31.7952 49.2579
20% 0.0443 0.2698 0.1182 0.2001 0.1303 0.1320

(H)-NMAE 40% 0.0658 0.2819 0.1225 0.2214 0.1331 0.1409
60% 0.0903 0.2950 0.1299 0.2492 0.1434 0.1588
80% 0.1392 0.3911 0.1495 0.2852 0.1641 0.1997

2

3
4

Figure 5 Performance comparison based on MAPE values (left) and NMAE values (right) across5
different missing rates for the G dataset (upper) and the H dataset (lower).6
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1
Additionally, we also present the computation time for all models at each missing rate in Table 3.2

The results indicate that our proposed model performs acceptably in terms of efficiency.3
4

TABLE 3 Computation Time (in seconds) of Imputation Methods5

Dataset Missing LBNTD ECLRMC STRTD LRSETD stTT STH-LRTC
20% 576.0667 580.7604 28.8633 14.9848 0.3285 1236.6661

(G)-time 40% 855.8848 710.1477 31.3499 19.4502 0.5282 1464.4715
60% 577.2102 748.1811 35.8618 19.5849 0.8027 1451.5579
80% 575.5270 860.7149 34.3666 23.9353 1.4635 1841.1340
20% 64.7596 142.4093 4.8572 5.2647 0.2302 144.6486

(H)-time 40% 75.5777 197.9183 6.2006 5.8623 0.3294 168.3460
60% 75.3918 277.2015 5.0135 5.7550 0.6477 188.3594
80% 72.4656 336.7025 4.6138 6.5225 1.0951 203.2036

6
CONCLUSION7

The proposed LBNTD model effectively imputes the traffic data with an explicable framework. It8
incorporates a bi-directional neighbor combination to capture spatiotemporal features and make9
surrounding elements aid in estimating missing values. The resulting learnable weight matrix is adaptable10
to various datasets. Experimental results on real-world traffic datasets demonstrate that the LBNTD11
model outperforms other state-of-the-art imputation methods.12

For simplicity, we assume that each constituent is represented independently by a bidirectional13
neighbor combination and ignore their cross-interference. The consideration of multivariate schemes will14
further enhance the practicality of our model by making it more relevant to real-world scenarios.15
Meanwhile, We intend to engage with local transport authorities to seek specialized expert insights. This16
partnership will empower us to design more sophisticated analytical methods for multimodal data, thereby17
improving the efficiency of data-driven strategies. In the future, we remain committed to extending the18
generalisation of the model, ensuring its robustness in cross-regional contexts. We will unify GPS grid19
data and detector graph data into a single representation during the preprocessing stage. This will enable20
the implementation of data fusion and broaden the applicability of completion techniques.21
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