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Abstract— Low-rank tensor methods and their relaxation
forms have performed excellently in tensor completion prob-
lems, including internet traffic data imputation. However, most
are based on the unfolding matrix’s nuclear norm, which
inevitably destroys the traffic tensor structure and significantly
suffers from computation burden. Also, few consider the in-
trinsic spatiotemporal features, especially for the underlying
spatial similarity. This paper proposes a novel low-rank and
spatiotemporal priors enhanced Tucker decomposition (called
LSPTD) for internet traffic data imputation. LSPTD model
exploits the spatial similarity using factor graph embedding
and characterizes the temporal correlation using the Toeplitz
matrix. Two easily implementable algorithms and the closed-
form updating rules are designed to solve the LSPTD model.
Numerical experiments on the Abilene and GÉANT datasets
demonstrate that our proposed model is superior to the other
imputation methods in terms of NMAE and computation time.

I. INTRODUCTION

Internet traffic data (ITD) records subjects’ movement
from an origin to a destination, involving pair, time, and
day modes, which contain useful information for intelligent
transportation systems. Unfortunately, the missing data prob-
lem frequently occurs due to communication malfunctions,
transmission distortions, or adverse weather conditions [?].
As many traffic network engineering tasks require complete
traffic information or are susceptible to missing data [?],
internet traffic data imputation (ITDI), which refers to esti-
mating the missing value from partial measurements, is still
a typical and challenging problem.

ITD is often organized by matrices or tensors, which
accurately store spatial and temporal information. Roughan
et al. [?] first introduced a decomposition-based model using
the low-rank matrix factorization to impute the missing traffic
data. Wang et al. [?] then proposed an adaptive spatial-
temporal constraint model to improve imputation perfor-
mance by leveraging traffic network data’s low rankness
and spatial-temporal correlation. However, the matrix-based
methods ignore the multidimensional nature, which cannot
sufficiently capture the spatial-temporal features and are
unsuitable for high-level missing scenarios.

To overcome the shortcomings of the matrix-based meth-
ods, Xie et al. [?] used the third-order traffic tensor and
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Fig. 1. Visual display for the proposed LSPTD model.

proposed a sequential tensor completion algorithm. Further-
more, Tan et al. [?] organized a fourth-way traffic flow tensor
to cover the spatial-temporal correlations and achieved better
performance. Therefore, keeping the tensor structure of the
raw data is more appropriate for ITDI. In this paper, to
minimize computation complexity, the raw ITD is structured
as a third-order tensor with origin-destination (OD) pairs,
time slots, and days as the three axes (refer to Fig. 1).

Exploiting the spatial and temporal relations among traffic
data is the core idea for ITDI. On the one hand, Chen
et al. [?] introduced an autoregressive term into the low-
rank tensor completion framework to capture the tempo-
ral correlations and achieved good performance in both
low- and high-level missing scenarios. On the other hand,
decomposition-based, i.e., representing the tensor structure
under learned lower dimensional subspace, imposes spatial-
temporal constraints directly on ITD [?], [?], [?] to improve
model performance. To our knowledge, the Tucker-based
models perform more robustness and precisely, enhancing
the learning capabilities of the traffic data imputation (TDI)
[?]. So, we introduce the Tucker-based model for ITDI.

There are three major open questions yet to be addressed
for ITDI. Firstly, the global low rankness of ITD has not been
well defined. Considering that the Tucker rank relaxation is
not unique, how to construct an effective low-rank Tucker
is a crucial issue. Secondly, the spatial-temporal correlation
should not be neglected. However, the existing models are
often based on purely temporal regularization terms. Finally,
the Tucker-based relaxed model is a nonconvex optimization
problem, an efficient optimization algorithm is thus needed
to find the stationary points and attain optimal solutions.

To address the aforementioned shortcomings, a novel
Tucker-based low-rank with spatiotemporal prior method,
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called Low-rank Spatiotemporal Priors enhanced Tucker
Decomposition (LSPTD) model, is proposed in this paper
(Fig 1 gives a visual display for the LSPTD model). The
LSPTD model encodes the global low rankness in a Tucker
manner. It exploits the spatial-temporal correlation using
factor graph embedding (GE) prior [?] and Toeplitz matrix
constraints to reduce the imputation error. The LSPTD
method outperforms the existing imputation methods on real-
world datasets regarding accuracy and computation time. The
main contributions of this paper are summarized as follows.

1) Motivated by [?] and [?], we use the weighted factor
matrix rank and core tensor sparsity to encode the
global low Tucker rank. Furthermore, the factor matrix
weight is self-adaptive, and a tradeoff parameter is used
to balance the low-rank and sparsity.

2) To further characterize the spatial-temporal correla-
tions, we consider the factor GE prior and the Toeplitz
matrix as the smoothness constraints to capture such
similarities, which improves the model’s ability and
reduces the imputation error.

3) Two optimization algorithms are specifically designed
and our algorithms have closed-form update rules.

TABLE I
NOTATIONS

X ,U, α A tensor, matrix and real value, respectively.
Ω, Ω̄ Observed index set and its complement.
Sη(x) Shrinkage operator with η in component-wise.
Dη(U) Singular Value Decomposition (SVD) shrinkage of matrix U.
XΩ Observed entries supported on the observed index.
×n Mode-n product.
⊗ Kronecker product.
tr Trace operator.

‖·‖F Frobenius norm.
‖·‖∗ Nuclear norm.
X(n) Mode-n unfolding of tensor X .

II. NOTATIONS AND RELATED WORKS

A. Notations

We give related concepts of Tucker decomposition as
follows and present all notations used in this paper in Table
I (please refer to [?] for more details).

Tensors are multidimensional arrays, the higher-order
generalization of vectors and matrices. Given a tensor
X ∈ RI1×I2×···×IN , it can be decomposed into a core tensor
G ∈ RI1×I2×···×IN multiplying a matrix Un ∈ RIn×In along
each mode, i.e., X = G×1U1 · · · ×N UN = G ×Nn=1 Un.
We call that Tucker decomposition, which represents the
underlying structure of the tensor.

Based on the matrix Kronecker product ⊗, the Tucker
decomposition can be written in the matrix form:

X(n) = UnG(n)V
T
n

where Vn = (UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)
and the superscript ‘T’ represent matrix transpose.
It is not difficult to verify that vec(X ) =
(UN ⊗ · · · ⊗Un ⊗ · · · ⊗U1) vec(G) = ⊗1

n=NUnvec(G).

TABLE II
SOME EXISTING TUCKER-BASED TRAFFIC DATA IMPUTATION METHODS

TC methods Types of the prior
Low-rank Spatial Temporal

LSPTD X X X
ManiRTD [?] X X X
LR-SETD [?] X X
LATC [?] X X
STD [?] X
IFHST [?] X
Tucker-Wopt [?] X

B. Related works

In general, internet traffic tensor data has spatial similarity
and temporal correlation features; many studies have proven
that the low-rank assumption combined with the spatiotem-
poral prior performs better for ITDI [?], [?], [?].

Low-rank property, which depicts the inherent global
correlations in ITD, is an essential assumption in the TDI
problem. Tan et al. [?] first modeled the traffic data as a third-
order tensor and applied the low-rank tensor nuclear norm
minimization method to estimate the traffic flow. However,
the nuclear norm minimization in the unfolding matrix
fails to exploit the tensor structure [?] and cannot impose
spatial-temporal constraints directly on data matrices [?]. To
overcome these shortcomings, Tan et al. [?] applied Tucker
decomposition to TDI. Chen et al. [?] proposed a Bayesian
augmented CANDECOMP/PARAFAC (CP) decomposition
model for traffic data analysis and combined domain knowl-
edge to enhance the imputation performance. Furthermore,
Zhang et al. [?] introduced the tensor train (TT)-based
models to improve the recovery performance. Hence, the
low-rank decomposition model is more appropriate for ITDI.

Given the spatiotemporal features in ITD noted in [?],
regularization terms were considered in many papers. Rose et
al. [?] proposed a unified low-rank tensor learning framework
considering spatial similarity by constructing a Laplacian
regularizer for spatial-temporal data analysis. Chen et al.
[?] exploited the property of the low rankness and l2 norm
regularization of factor matrices in the Tucker model to
estimate the missing traffic speed. Besides, Wu et al. [?]
proposed a modified CP decomposition framework to capture
spatial-temporal features in the ITDI problem.

The joint priors of low Tucker rank and spatial-temporal
were also researched. Pan et al. [?] proposed a sparse
enhanced Tucker model in the tensor completion problem.
Gong et al. [?] reshaped a 3rd/4th order Hankel traffic tensor
and proposed an innovative manifold regularized Tucker
decomposition model for traffic data imputation. However,
the spatiotemporal characteristics of ITD have yet to be fully
explored. The main attributes of our proposed LSPTD model
and that of several Tucker-based popular ITDI methods are
listed in Tab. II.

III. PROPOSED MODEL AND ALGORITHMS

We propose a Tucker-based model and consider low-
rank and spatiotemporal priors for ITDI. Firstly, we use
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the weighted factor matrix rank and core tensor sparsity to
encode the global low rankness; Then, we consider the factor
GE prior and the Toeplitz matrix to characterize the spatial-
temporal correlation, which improves the model’s ability to
deal with internet traffic data. Finally, two optimization al-
gorithms based on the Gauss-Seidel scheme [?] are designed
to solve the proposed LSPTD model.

A. Low-rank enhanced Tucker decomposition

Considering that Tucker is an effective and efficient model
to express the global low rankness, we use the Tucker
decomposition to characterize the global low-rank prior.

min
G,Un

(1− α)

N∏
n=1

‖Un‖∗ + α‖G‖1

s.t. X = G ×Nn=1 Un, 0 < α < 1,

Remark 1: The low-rank enhanced Tucker decomposition
differs from the KBR-based [?] and SBCD-based [?]
model with the factor matrix constraint. The reason-
ableness of our construction is summarised as follows:
minimizing factor matrix rank in Tucker decomposition
is equivalence to minimizing the unfolding matrix rank;
the low rankness of factor matrix implies that many
elements of the core tensor equal zero; it is therefore
rational to impose sparsity on the core tensor.

B. Spatiotemporal prior enhanced Tucker decomposition

Since internet traffic tensor data often have spatial and
temporal features [?], we use the factor GE prior and the
Toeplitz matrix as smoothness constraints to characterize the
spatiotemporal correlations and further improve the model
performance. The proposed LSPTD model is defined as

min
G,Un

(1− α)

α

N∏
n=1

‖Un‖∗ + ‖G‖1

+

N−1∑
n=1

βn
2

tr
(
UT
nLnUn

)
+
βN
2
‖TUN‖2F

s.t. X = G ×Nn=1 Un,

0 < α < 1, βn ≥ 0, n = 1, 2, · · · , N.

(1)

To assess the effectiveness of the spatial and temporal
priors, we present the comparative results obtained from our
numerical experiments (refer to Fig. 4).

Remark 2: the product function of the LSPTD model
is nonconvex, which is hard to solve. Also, the product
only represents the block size of the core tensor, we thus
use the weighted factor matrix nuclear norm summation
term in our algorithm design.

C. Algorithms

We introduce the ITDI problem (2) based on the LSPTD
model (1) with setting N = 3 since our numerical experi-

ments focus on third-order tensors.

min
G,{Un}

λ

3∑
n=1

ωn ‖Un‖∗ + ‖G‖1

+

2∑
n=1

βn
2

tr
(
UT
nLnUn

)
+
β3

2
‖TU3‖2F ,

s.t. X = G ×3
n=1 Un, XΩ = TΩ,

(2)

where

λ =
1− α
α

, 0 < α < 1, ωn =

3∏
i=1,i6=n

1

Ri
, Ri =

∑
σ (Ui) .

Model (2) is a nonconvex minimization problem (mode-
n is a bilinear function) containing many local minima; it
is much harder to find the optimal solution of (2). However,
every subproblem can be simplified to a convex optimization
problem based on the Gauss-Seidel scheme, and we propose
two algorithms for ITDI. (Note that our algorithms can
be extended to higher-order tensor cases, we derive the
algorithmic details by setting N = 3.)

Algorithm 1: Proximal Alternating Linearized Mini-
mization. We penalize (2) into the (3) and apply the proxi-
mal alternating linearized parallel multi-block minimization
method (PLAM) to solve the LSPTD model.

min
G,{Un},X

λ

3∑
n=1

ωn ‖Un‖∗ + ‖G‖1 +
µ

2

∥∥X − G ×3
n=1 Un

∥∥2

F

+

2∑
n=1

βn
2

tr
(
UT
nLnUn

)
+
β3

2
‖TU3‖2F ,

s.t. XΩ = TΩ, XΩ̄ = {G ×3
n=1 Un}Ω̄.

(3)
• Optimization of G. We have the LASSO problem

Ĝ = argmin
G

µLG
2

∥∥∥∥G − (G̃ − 1

LG
∇Gf

(
G̃
)

)

∥∥∥∥2

F

+ ‖G‖1
(4)

where G̃ denotes the extrapolated point and the ∇Gf(G)
can be calculated by (5), and the Lipschitz constant is
given by LG =

∥∥⊗1
n=3U

T
nUn

∥∥
2

=
∏3
n=1

∥∥UT
nUn

∥∥
2
.

∇Gf(G) = G ×3
n=1 U

T
nUn −X ×3

n=1 U
T
n (5)

Then, the close form of the Tucker core tensor updating
rule (6) is given by

Ĝ = S 1
µLG

(G̃ − 1

LG
∇Gf

(
G̃
)

), (6)

and G̃ is updated by (7) with the updated step size ηk
for k ≥ 1

G̃k = Gk + ηk
(
Gk − Gk−1

)
, (7)

ηk = tk−1−1
tk

, tk =
1+
√

4(tk−1)2+1

2 , t0 = 1. (8)

• Optimization of Un. By performing mode-n unfolding
(we detail the GE prior, and the gradient of Toeplitz
constraint has the

(
βnUnTTT

)
form), with Uj , j ≤ n
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and other parameters fixed, we have the matrix with
nuclear norm optimization

Ûn = argmin
Un

LUn

2

∥∥∥∥Un − (Ũn −
1

LUn

∇Unf
(
Ũn

)
)

∥∥∥∥2

F

+
λωn
µ
‖Un‖∗ .

(9)
We calculate the gradient and its Lipschitz constant as

∇Un
f(Un) = UnG(n)V

T
nVGT

(n) −X(n)VGT
(n)

+ βnLnUn

LUn
=
∥∥∥G(n)V

T
nVGT

(n)

∥∥∥
2

+ ‖βnLn‖2

Then, the closed-form solution of the nuclear norm
proximal operator is

Ûn = D λωn
µLUn

(
Ũn −

1

LUn

∇Un
f
(
Ũn

))
, (10)

and Ũn is updated using (11) with ηk

Ũk
n = Uk

n + ηk
(
Uk
n −Uk−1

n

)
, for k ≥ 1 (11)

• The optimal solution X satisfies (12)

X̂Ω = TΩ, X̂Ω̄ =
(
Ĝ ×3

n=1 Ûn

)
Ω̄

(12)

The proposed PLAM-based algorithm for ITDI can be
summarized in Algorithm 1.

Algorithm 1 PLAM-based LSPTD
1: Input: Missing traffic tensor T , observed entries Ω.
2: Output: Imputed traffic tensor X̂ .
3: Initialize G0, {U0

n} (1 ≤ n ≤ 3) randomly, 0 < α < 1,
µ = 1, and define Z0 as null tensor;

4: XΩ = TΩ, XΩ̄ = Z0
Ω̄

;
5: while k < K do
6: Optimize G by Eq. (6);
7: for n = 1 to 3 do
8: Optimize Un using Eq. (10);
9: end for

10: Update Tucker decomposition Zk using {Uk
n} and

Gk;
11: if F

(
Gk,Uj≤n,Uj>n

)
is decreasing then

12: Re-update Gk and Uk
n respectively;

13: else
14: Re-update Gk and Uk

n respectively with G̃k = Gk−1

and Ũk
n = Uk−1

n ;
15: end if
16: until

∥∥X k+1 −X k
∥∥
F

∥∥X k∥∥−1

F
< 1e−3 are satisfied.

17: end while
18: return X̂Ω = TΩ, X̂Ω̄ =

(
Ĝ ×3

n=1 Ûn

)
Ω̄

.

Remark 3: Following [?], we can prove that the
sequences generated by Algorithm 1 have the stationary
points. Here, we skip their convergence analysis for the
conciseness of the paper.

Algorithm 2: Inexact Augmented Lagrange Multiplier
Framework. To solve for the variables in (2), we define the
augmented Lagrange function as follows

min
G,Un,X

λ

3∑
n=1

ωn ‖Un‖∗ + ‖G‖1

+

2∑
n=1

βn
2

tr
(
UT
nLnUn

)
+
β3

2
‖TU3‖2F

+
µ

2

∥∥X − G ×3
n=1 Un

∥∥2

F
+
〈
Y,X − G ×3

n=1 Un

〉
.

(13)
where µ is a positive scalar that is adaptively changing, and
Y is the Lagrange multiplier. Now we can solve the problem
under the ADMM framework and apply the linearization
technique to solve the separable optimization problem.
• Optimization of G.

Ĝ = S 1
µLG

(G̃ − 1

LG
∇Gf

(
G̃
)

), LG =

3∏
n=1

∥∥UT
nUn

∥∥
2

∇Gf(G) = G ×3
n=1 U

T
nUn −

(
X +

Y
µ

)
×3
n=1 U

T
n .

(14)
• Optimization of Un with Uj , j 6= n and other parame-

ters fixed.

Ûn = D λωn
LUn

(
Ũn −

1

LUn

∇Un
f
(
Ũn

))
.

∇Un
f(Un) = µUnG(n)V

T
nVGT

(n) + βnLnUn

−
(
µX(n) + Y(n)

)
VGT

(n),

LUn =
∥∥∥µG(n)V

T
nVGT

(n)

∥∥∥
2

+ ‖βnLn‖2
(15)

• Optimization of X .

min
X

∥∥∥∥X − (G ×3
n=1 Un −

Y
µ

)∥∥∥∥2

F

,

s.t. XΩ = TΩ

X̂Ω = TΩ, X̂Ω̄ =

(
Ĝ ×3

n=1 Ûn −
Yk
µk

)
Ω̄

(16)

• Update Y .

Yk+1 = Ŷ + µk
(
X̂ − Ĝ ×3

n=1 Ûn

)
,

µk+1 = ρµk, ρ ∈ [1.1, 1.2].
(17)

The proposed IALM-based algorithm can be summarized
in Algorithm 2.

Remark 4: Algorithm 2 exploits linearization to solve
(2). The convergence of IALM has been proven for
convex problems using linearization [?]. Since the Tucker
decomposition and factor priors, deriving a theoretical
guarantee for Algorithm 2 is difficult.

IV. NUMERICAL EXPERIMENTS

This section presents the experimental results on real ITD,
including the Abilene 1 (121 ∗ 288 ∗ 7) and the GÉANT 2

1https://doi.org/10.5281/zenodo.7725126
2https://totem.info.ucl.ac.be/dataset.html
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Algorithm 2 IALM-based LSPTD
1: Input: Missing traffic tensor T , observed entries Ω.
2: Output: Imputed traffic tensor X̂ .
3: Initialize: G0, {U0

n} (1 ≤ n ≤ 3), 0 < α < 1, µ0 =
1e−5, and define Z0 as null tensor;

4: XΩ = TΩ, XΩ̄ = Z0
Ω̄

;
5: while k < K do
6: Optimize Gk+1 via (14) with other variables fixed;
7: Optimize all Uk+1

n via (15) with other variables fixed;
8: Optimize X k+1 with other variables fixed;
9: Update Yk+1 and µk+1 = ρµk, ρ ∈ [1.1, 1.2]

10: until
∥∥X k+1 −X k

∥∥
F

∥∥X k∥∥−1

F
< 1e−3 are satisfied.

11: end while
12: return X̂Ω = TΩ, X̂Ω̄ =

(
Ĝ ×3

n=1 Ûn − YKµK
)

Ω̄

(529 ∗ 96 ∗ 7) dataset. All experiments are performed using
MATLAB 2023a on Windows 10 64-bit operating system on
a workstation equipped with an Intel(R) Xeon(R) W-2123
CPU with 3.60 GHz, 64 GB RAM.

Performance evaluation: As reported in the literature, we
adopt the normalized mean absolute error (NMAE, the lower
the better) value to measure the imputation performance.
Specifically, the NMAE is defined as (18)

NMAE =

∑
(i1,i2,i3)∈Ω̄

∣∣∣X̂i1i2i3 −X ∗i1i2i3∣∣∣∑
(i1,i2,i3)∈Ω̄

∣∣X ∗i1i2i3∣∣ , (18)

where X̂ and X ∗ correspond to the imputed and real tensor,
respectively.

Implementation details: Our experiments consider the
random missing (RM) with the sample ratio (SR) from
0.9 to 0.05, and structurally missing (SM) scenarios [?].
In all our experiments, we set α = 0.5 and calculate
the SVD ratios between mode-n unfolding matrices and
spatiotemporal matrices ({L1,L2} and T in (1)) to deliver
βn, n = 1, 2, 3.

Model comparison: We select four baselines: ManiRTD
[?], LR-SETD [?], LATC [?], and TAS-LR [?], to demon-
strate the robustness and efficiency of the proposed LSPTD
model. It is noteworthy that TRMF is a direct matrix-
based approach, while others are tensor-based. We reorganize
the traffic tensor and assign the parameters of baselines as
described in the reference papers.

Figure 2 illustrates the NMAE values and computation
time for different SRs in the RM scenarios. The results
demonstrate that LSPTD exhibits competitive performance.
Particularly, it outperforms other methods when the sample
ratio exceeds 20% and achieves comparable accuracy when
the sample ratio is below 10%. Additionally, LSPTD signif-
icantly reduces computing time compared to other methods.
We further consider the SM scenarios in Figure 2, the NMAE
values demonstrate that SM is harder to model, still, LSPTD
performs better in most cases. In conclusion, our proposed
LSPTD method is both more efficient and effective for ITDI.

Ablation study: We first discuss the effect of the

Fig. 2. RM results of ITDI methods based on NMAE values (left) and
computing time (right) across different SRs for both the Abilene dataset
(upper) and the GÉANT dataset (lower).

Fig. 3. SM results of ITDI methods based on NMAE values across different
SRs for both the Abilene dataset (upper) and the GÉANT dataset (lower).

low-rank, spatial, and temporal priors of LSPTD on the
performance in terms of NMAE for Abilene data. For
simplicity, we denote ‘LTD’ (low-rank prior) with β =
(0, 0, 0), ‘LTPTD’(low-rank and temporal priors) with β =
(0, 0, 1.23e5), and ‘LSPTD’ (low-rank and spatiotemporal
priors) with β = 1e5 ∗ (0.22, 0.3, 1.23), respectively. Fig.
4 shows that LTD performs better than KBR and SBCD,
which implies that our proposed global low rankness is more
appropriate. Furthermore, using spatial priors leads to a 3%
reduction in imputation error, whereas incorporating tempo-
ral priors results in an average performance enhancement of
8%, as depicted in Figure 4.

Fig. 4. NMAE versus SRs for KBR, SBCD, LTD, LTPTD, and LSPTD.

We investigate the performance of proposed Algorithms
1 and 2. Fig. 5 shows PALM-based algorithm has a better
performance in accuracy, although it takes more computing
time. The reason may be that we do re-update to make
the objective nonincreasing. And the monotonicity of the
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nonconvex objective plays a core role in performing stably.

Fig. 5. Results of NMAE and computing time versus SRs via solving
LSPTD model using Algorithm 1 and Algorithm 2.

V. CONCLUSION

This paper introduces a novel Tucker-based model with
integrated low-rank and spatiotemporal priors for internet
traffic data imputation. The proposed LSPTD model utilizes
weighted factor matrix rank and core tensor sparsity to
capture global low rankness. Additionally, it incorporates the
factor GE and a Toeplitz matrix as spatiotemporal constraints
to enhance model performance. To solve the LSPTD model,
two optimization algorithms are specifically designed. A
series of experiments validate the superiority of our proposal,
showing its superior accuracy and efficiency compared to
existing matrix-based and tensor-based methods. Actually,
the current framework suffers a high computational cost for
large-scale traffic data imputation. One can consider the fast
Fourier transform to address this issue [?].
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