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Abstract—In this paper, we propose a novel tensor completion
framework, Overlapping Tensor Train Completion with TV
Regularization (OTTC-TV), which integrates the strengths of
both Overlapping Ket Augmentation (OKA) and Total Variation
(TV) regularization. This framework addresses two critical lim-
itations of traditional tensor completion methods based on the
Tensor Train (TT) decomposition: poor recovery performance
in high missing rate scenarios and block artifacts that disrupt
image continuity. By leveraging OKA, our proposal reduces
block artifacts and improves inter-block smoothness, overcoming
the non-smooth transitions between blocks. TV regularization
further ensures smoothness across the reconstructed tensor by
penalizing abrupt gradient changes. The proposed model demon-
strates superior performance in completing high-missing-rate
color images while also providing greater flexibility in handling
varying input tensor dimensions. Extensive experiments validate
the effectiveness and adaptability of OTTC-TV in color image
reconstruction tasks.

Index Terms—Low-rank tensor completion, High missing rate,
Total variation, Overlapping

I. INTRODUCTION

Tensors, as a multidimensional data structure, have been
widely applied in image processing, video analysis, medical
imaging, and other multi-modal data research fields [1], [2],
[3]. They can efficiently represent complex multidimensional
interactions and restore missing information in color image
reconstruction through Low-Rank Tensor Completion (LRTC)
techniques [4], [5], [6]. Therefore, tensors play a crucial role
in many fields, such as color image reconstruction[4]

The LRTC problem can be formulated as:

min
M

rank(M) s.t. PΩ(M) = T , (1)

where M ∈ Rn1×n2×···×nd is the target tensor to be recov-
ered, and T is the observed tensor with missing entries [7].
The operator PΩ(·) is a projection operator. However, directly
minimizing the tensor rank is NP-hard[8], [9], motivating the
use of convex relaxations, such as minimizing the nuclear
norm of the tensor’s matricization along different modes [5].

Traditional methods encounter further difficulties in captur-
ing complex multi-way interactions. Tensor completion based
on low-rank structures, such as CANDECOMP/PARAFAC
(CP)[10] and Tucker[11], offers potential solutions. However,
CP and Tucker decompositions are computationally expensive,
particularly due to the difficulty of estimating the CP rank
and the imbalance in Tucker decompositions, where unfolded
matrices can vary greatly in size [7].

The limitations of CP and Tucker have led to the de-
velopment of more efficient alternatives like Tensor Train
(TT) decomposition[7]. While TT decomposition effectively
addresses these computational challenges, there remain certain
shortcomings, particularly in handling large-scale tensors with
missing or sparse observations.

TT decomposition factorizes a tensor into smaller core
tensors, reducing computational complexity while preserving
global correlations across modes. The TT rank [12] of a tensor
M is defined as:

rankTT(M) = (rank(M(1)), . . . , rank(M(d−1))). (2)

TT-based methods have achieved success in tasks like image
reconstruction [13], [14], [6], but challenges remain under high
sparsity. They often fail to preserve local smoothness, resulting
in block artifacts that degrade image quality, especially in color
datasets. Additionally, high missing rates lead to poor recovery
of underlying structures, and most TT frameworks struggle to
adapt to varying tensor dimensions, limiting their versatility.
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Recent studies show that attention mechanisms and latent
variable models significantly improve image reconstruction.
Xie et al. proposed a spatial attention-guided facial editing
method to capture fine-grained features [15], and Takagi and
Nishimoto demonstrated high-resolution reconstruction from
brain activity using latent diffusion models [16]. These works
suggest that new frameworks must integrate both global and
local information to handle sparsity and missing data effec-
tively.

To overcome the limitations of traditional tensor comple-
tion methods in high-missing-rate scenarios, we propose a
framework integrating Overlapping Ket Augmentation (OKA)
with Total Variation (TV) regularization. OKA improves local
consistency by introducing overlapping blocks, reducing block
artifacts and ensuring smooth transitions. TV regularization
complements this by penalizing abrupt gradient changes, en-
hancing global smoothness and improving the reconstruction
of sparse data. The synergy between OKA and TV boosts
both accuracy and adaptability, offering a robust solution
for tensor completion, particularly in high-dimensional, large-
scale datasets.

The main contributions of this paper are summarized as
follows:

• We introduce a novel tensor completion framework that
integrates Overlapping Ket Augmentation (OKA), To-
tal Variation (TV) regularization, and Tensor Train
decomposition. This integrated approach effectively re-
duces block artifacts and significantly improves lo-
cal smoothness, enhancing image reconstruction perfor-
mance.

• Our method demonstrates superior performance in sce-
narios with extremely high missing rates, where other
methods typically fail. By utilizing overlapping block
structures and efficient local information sharing, Our
framework maintains stability and robustness where tra-
ditional approaches collapse.

• The framework is highly adaptable to tensor sizes
and different application scenarios. Its flexibility and
scalability make it an effective and general solution for
color image reconstruction tasks.

II. PRELIMINARIES

A. Tensor Basics

Tensors generalize matrices to higher dimensions, with an
order N tensor being an element of a product of N vector
spaces. For instance, vectors and matrices are tensors of order
1 and 2, respectively. We denote tensors by calligraphic letters
like M, where M ∈ RI1×I2×···×IN . Mode-k matricization
flattens a tensor M into a matrix along its k-th mode, aligning
the mode-k fibers as matrix columns. It is represented as
M(k) ∈ RIk×(I1...Ik−1Ik+1...IN ).

B. Tensor Train

A Tensor Train (TT) decomposition is a specific type of
low-rank tensor decomposition that represents a high-order
tensor as a sequence (or train) of lower-order tensors, also

known as TT-cores. For a tensor M ∈ RI1×I2×···×IN , the TT
decomposition expresses M as:

M(i1, i2, . . . , iN ) = G1(i1)G2(i2) . . .GN (iN ), (3)

where each Gk(ik) ∈ Rrk−1×rk is a TT-core and rk are the
TT-ranks satisfying r0 = rN = 1.

C. Overlapping Ket Augmentation (OKA)

OKA divides the input tensor into smaller overlapping
blocks, where adjacent blocks share elements to maintain
continuity and smoothness across regions.

Let the input tensor be I ∈ RI1×I2×I3 . OKA constructs a
higher-order tensor T as:

T [I1×I2×I3] =
4∑

ip,...,i1=1

I1∑
j=1

cip...i1jeip⊗· · ·⊗ei1⊗uj , (4)

where p depends on the tensor size and overlap, and eik are
orthonormal bases.

The number of overlapping elements noverlapping is computed
based on the tensor slice dimensions. For odd rows or columns,
noverlapping = 3, and for even, noverlapping = 2:

noverlapping =

{
3, if r (or c) mod 2 = 1,

2, if r (or c) mod 2 = 0.
(5)

OKA enhances tensor completion by preserving local con-
tinuity, making it more powerful than traditional methods,
especially in high-missing-rate scenarios.

III. PROPOSED FRAMEWORK

The core of our proposed tensor completion framework in-
tegrates two major techniques: Overlapping Ket Augmentation
(OKA) and Total Variation (TV) regularization, both of which
work synergistically to address the shortcomings of traditional
tensor completion methods in scenarios with high missing
rates.

OKA introduces an overlapping block structure, reducing
block artifacts common in non-overlapping methods. Tradi-
tional Ket Augmentation (KA) methods improve tensor order
but often result in discontinuities between blocks, degrading
image quality in high-missing-rate scenarios [6]. OKA miti-
gates this by sharing boundary information between adjacent
blocks, ensuring smoother transitions and preserving continu-
ity. Additionally, it offers flexibility for non-square or prime-
sized tensors [17], making it suitable for various applications.

However, relying solely on OKA poses challenges when
the missing rate becomes excessively high. In such cases,
overlapping block structures may still fail to provide sufficient
information, causing the model to fall into local optima and
deteriorating completion quality [18]. While OKA improves
local smoothness, it lacks a global mechanism to ensure
continuity across the entire tensor.

To address this limitation, we incorporate TV regularization,
which is highly effective in enforcing smoothness across the
entire tensor by penalizing abrupt changes in data gradients
[1]. This enhances the model’s robustness, especially when
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dealing with sparse datasets. By suppressing local discontinu-
ities and preventing noise amplification in regions with missing
data, TV regularization complements OKA, which focuses on
local continuity. Together, they ensure both local and global
smoothness, significantly improving the overall quality and
stability of the reconstruction process, even in extreme sparsity
conditions.

A. Model

In our model, the input tensor M is processed using OKA,
transforming it into a higher-order tensor T (M). The general
formulation of this transformation is expressed as:

T [I1 × I2 × I3] =
4∑

ip,...,i1=1

I1∑
j=1

cip...i1jeip ⊗ · · · ⊗ ei1 ⊗ uj ,

(6)
where p is determined by the size of the input tensor and
the number of overlapping elements, and eik represents the
orthonormal bases used in the augmentation process. The
overlapping number, denoted by noverlapping, is computed recur-
sively based on the tensor’s dimensions, ensuring that adjacent
blocks share elements and maintain local continuity. This
overlapping strategy reduces block artifacts and enhances the
smoothness of the tensor T (M).

After this preprocessing with OKA, the objective function
of the model can be written as:

f(X,Y,M) = min
M,X,Y

j−1∑
k=1

αk

2
∥XkYk −T[k](M[k])∥2F

+ λTV(T (M)),

(7)

where X = (X1, . . . ,Xj−1), Y = (Y1, . . . ,Yj−1), and λ
is the regularization parameter. The first term is the fidelity
term, while the second is the regularization term. The TV term
promotes spatial smoothness in the tensor reconstruction.

B. Algorithm

We adopt a Block Successive Upper-Bound Minimization
(BSUM) approach based on [19] to solve the non-convex
tensor completion problem. The algorithm alternates between
updating the matrices Xk and Yk derived from the OKA-
processed tensor and solving the T -subproblem using ADMM,
incorporating the TV regularization term.

1) BSUM: In each iteration of the BSUM framework, the
following steps are performed:

The matrix Xk is updated by solving the following sub-
problem for each mode-k unfolding of the tensor:

Xl+1
k =

(
αkT

l
[k](Y

l
k)

⊤ + ρXl
k

) (
αkY

l
k(Y

l
k)

⊤ + ρI
)−1

,

(8)
where ρ is a proximal parameter, T[k] represents the mode-k
unfolding of the current tensor T , and αk is a mode-specific
weight.

After updating Xk, the matrix Yk is updated for each mode-
k as follows:

Yl+1
k =

(
αk(X

l+1
k )⊤Xl+1

k + ρI
)−1

(
αk(X

l+1
k )⊤Tl

[k] + ρYl
k

)
.

(9)
These alternating updates progressively refine the low-rank

representation of the tensor at each iteration.
2) ADMM for M Subproblem: Once the matrices Xk and

Yk are updated, we solve for the tensor T by using the
Alternating Direction Method of Multipliers (ADMM). The
optimization problem to solve is:

T l+1,p+1 = argmin
T

j−1∑
k=1

αk

2
∥Xl+1

k Yl+1
k −T[k]∥2F

+
ρ

2
∥T − T l∥2F + λTV(T ),

(10)

where the TV regularization term promotes smoothness
across tensor slices, and λ is the regularization parameter.

T l+1 = argmin
T

j−1∑
k=1

∥Xl+1
k Yl+1

k −T[k]∥2F + λTV(T ), (11)

which updates the primary tensor variable by minimizing the
fidelity term and TV regularization.

Al+1
k =

αkunreshape(Xl+1
k Yl+1

k ) + β1Ml+1 +Bl+1
k

αk + β1
, (12)

which balances between the low-rank term and the updated
tensor.

Zl+1 = argmin
Z

(
∥Ml+1 − Z+Ql+1∥2F + β2∥Z∥2F

)
, (13)

enforcing the constraints involving Z and the TV regulariza-
tion.

El+1
k = argmin

Ek

∥T −Al+1
k ∥2F + λTV(Ek), (14)

which ensures local smoothness and minimizes block artifacts.
After updating all auxiliary variables, the tensor T is

projected back to the feasible set to satisfy the observed data
constraints:

T l+1 = PΩ

(
j−1∑
k=1

Xl+1
k Yl+1

k + T l+1

)
, (15)

where PΩ(·) is the projection operator that retains the observed
entries and reconstructs the missing entries.

This iterative process guarantees that the tensor is completed
with smooth transitions and robust performance, even for high
missing rate scenarios.
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(a) PSNR (Lena) (b) SSIM (Lena) (c) PSNR (Peppers) (d) SSIM (Peppers)

Fig. 1: The PSNR and SSIM values for Lena and Peppers images.

Fig. 2: Fig presents the visual comparison of color image reconstruction with a sampling rate (SR) of 0.01 using different
tensor completion methods. The figure showcases the original image, followed by the observed (incomplete) data, and then
the results obtained by several methods, including SiLRTC, TMac, TNN, SiLRTC-TT, TMac-TT, and MF-TTTV

IV. NUMERICAL EXPERIMENTS

A comprehensive evaluation of our model: Overlapping-
enhanced Tensor Train Completion with TV regularization
(OTTC-TV) will be presented in this section for color image
reconstruction. The performance of OTTC-TV is compared
against several state-of-the-art tensor completion techniques,
including tSVD [20], HaLRTC [21], SiLRTC-TT [6], TMac-
TT [6], TmacTT-OKA [18] and MFTTTV [19].

A. Experiment setting

Experiments are conducted across a diverse set of color
image datasets, including house, lena, mandril, monarch,
peppers, and tulips. The experiments are performed on resized
images of dimensions 256 × 256 × 3. For each dataset, the
tensor completion methods are applied under sampling rates
of 0.01, 0.05, 0.1, and 0.2,

we use two widely recognized image quality metrics: Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) to assess our model.

For each method, hyperparameters such as the regular-
ization parameters λ and penalty parameters β are empiri-
cally optimized. The parameter λ was selected from the set
{0.01, 0.03, 0.05, 0.1} and β from {0.01, 0.03, 0.05, 0.1, 0.3},
with the aim of maximizing PSNR for each dataset.

B. Results and Analysis

Table I shows part of the results, providing PSNR and
SSIM values for each method under different sampling rates.
The results shows the superiority of our method, OTTC-
TV, especially in scenarios with high missing rates. As the
sampling rate decreases, most methods exhibit a significant
decline in performance, struggling to maintain high-quality
reconstructions. However, OTTC-TV consistently achieves the
best performance across all sampling rates, particularly when
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TABLE I: The PSNR and SSIM values

Image SR 0.01 0.05 0.1 0.2

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

house

tSVD 8.7628 0.0558 16.6647 0.2851 19.0234 0.4172 22.0994 0.6055

HaLRTC 3.2760 0.0017 15.8987 0.3035 18.2523 0.4427 21.5805 0.6226

SiLRTC-TT 10.5820 0.1897 16.5917 0.3729 18.6432 0.4886 21.5482 0.6624

TMac-TT 13.4362 0.1614 17.2618 0.5064 21.5472 0.7803 23.4039 0.8409

TmacTTOKA 15.4703 0.2415 20.1363 0.6710 22.7579 0.8278 24.3599 0.8745

MFTTTV 14.9628 0.3311 19.9360 0.7226 23.0919 0.8510 26.0531 0.9163

OTTC-TV 18.1800 0.5271 23.4500 0.7482 25.2600 0.8157 27.7600 0.8840

lena

tSVD 10.0404 0.0581 16.2044 0.2136 19.0021 0.3409 22.7725 0.5555

HaLRTC 4.9989 0.0029 15.8031 0.2996 18.6024 0.4092 22.3349 0.6066

SiLRTC-TT 11.4064 0.2966 18.2604 0.4732 20.9657 0.5913 24.0393 0.7362

TMac-TT 15.0743 0.6549 20.8267 0.8696 24.3129 0.9280 25.8506 0.9458

TmacTTOKA 17.0474 0.7576 24.0147 0.9263 25.6055 0.9442 26.9211 0.9571

MFTTTV 17.1212 0.8050 23.6481 0.9182 26.6604 0.9551 28.9308 0.9718

OTTC-TV 21.1758 0.8902 27.3124 0.9587 28.9415 0.9700 30.9987 0.9810

Algorithm 1 BSUM-based solver for OTTC-TV model

1: Input: Observed tensor I ∈ Rm×n×l, index set Ω,
parameters αk, ρ, λ, and maximum iterations lmax, pmax.

2: Output: Recovered tensor T .
3: Preprocessing: Apply OKA to the input tensor I to obtain

higher-order tensor T .
4: Initialize X0, Y0, T0.
5: for l = 1 to lmax do
6: for k = 1 to j − 1 do
7: Update Xk using:(8)
8: Update Yk using:(9)
9: end for

10: Update T using ADMM:
11: T (l+1) = ADMM(X(l+1),Y(l+1), T (l),Ω, αk, ρ, λ)
12: Check convergence criteria.
13: end for
14: Subroutine: ADMM Sub(X, Y, T , Ω, αk, ρ, λ)
15: Initialize auxiliary variables Ak, Z, E, Bk, Q, F.
16: for p = 1 to pmax do
17: Update T (p+1) using:(15)
18: Update Ak using:(12)
19: Update Z using:(13)
20: Update E using:(14)
21: Update Bk, Q, F using standard ADMM updates.
22: end for
23: return T (p+1)

the sampling rate drops to 0.01. The PSNR and SSIM values
of OTTC-TV remain significantly higher than other methods,
highlighting its robustness and effectiveness in handling highly
sparse data. This suggests that the overlapping block structure
and TV regularization work synergistically to preserve local
smoothness and global structure, even in highly incomplete
datasets.

Furthermore, the visual analysis in Figure 2 reveals that
while most tensor completion methods collapse when the
sampling rate is extremely low (e.g., 0.01), leading to distorted
or unrecognizable images, OTTC-TV demonstrates remarkable
resilience. It is capable of recovering recognizable and coher-
ent images even in such extreme conditions. Other methods
produce images that suffer from severe artifacts and blurred
regions, making them difficult to interpret.

C. Ablation Study

Moreover, the ablation study further reinforces the effec-
tiveness of both OKA and TV regularization in enhancing
tensor completion performance. Specifically, the comparison
between TMacTT, TMacTTOKA, MFTTTV, and OTTC-TV
demonstrates the individual contributions of each component.
TMacTT, which lacks any augmentation or regularization,
consistently yields the lowest PSNR and SSIM values across
all sampling rates, especially in high-missing-rate scenarios,
indicating its limited ability to reconstruct sparse data. The
introduction of OKA in TMacTTOKA leads to a noticeable
improvement, reducing block artifacts by ensuring smoother
transitions between overlapping regions. However, this en-
hancement alone is insufficient to address smoothness, par-
ticularly in more complex scenarios with higher missing data.

On the other hand, MFTTTV, which incorporates TV
regularization, significantly improves global consistency by
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penalizing abrupt changes in data gradients, yielding higher
PSNR and SSIM values than TMacTT and TMacTTOKA,
especially as the sampling rate increases.

Ultimately, OTTC-TV, which combines both OKA and TV
regularization, achieves the best results across all metrics. The
synergistic effect of these two components not only reduces
block artifacts but also maintains smoothness, making OTTC-
TV an appropriate solution for tensor completion in highly
sparse conditions. This underscores the necessity of both local
and global enhancements to achieve superior reconstruction
quality.

V. CONCLUSION

This paper proposes the Overlapping-enhanced Tensor Train
Completion with TV regularization (OTTC-TV) for color
image reconstruction under high-missing-rate scenarios. By
integrating Overlapping Ket Augmentation (OKA) and Total
Variation (TV) regularization, OTTC-TV mitigates block ar-
tifacts and enhances smoothness. Experiments show superior
performance across various sampling rates.

Experimental results clearly demonstrate that OTTC-TV
outperforms existing methods, both in numerical metrics and
visual reconstruction quality. In high-missing-rate conditions
(e.g., 95% missing),OTTC-TV retains key features and image
structures while other methods fail to restore meaningful
content.

Further research is needed to reduce the computational
complexity introduced by TV regularization and OKA while
maintaining performance.
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