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Spatiotemporal Regularized Tucker Decomposition
Approach for Traffic Data Imputation

Wenwu Gong, Zhejun Huang, and Lili Yang

Abstract—In intelligent transportation systems, traffic data
imputation, estimating the missing value from partially observed
data is an inevitable and challenging task. Previous studies
have yet to fully consider traffic data’s multidimensionality
and spatiotemporal correlations, which are crucial for traffic
data imputation, particularly in high-level missing scenarios.
To address this problem, we propose a novel spatiotemporal
regularized Tucker decomposition method. To begin with, we
convert the traffic data into a third-order tensor. We approximate
the traffic tensor under Tucker decomposition using the non-
negative factor matrices and sparse core tensor. Notably, we do
not need to specify or determine the Tucker rank through matrix
nuclear-norm minimization. The l1-norm of the core tensor
characterizes the low rankness, while the manifold regularization
and temporal constraint on factor matrices are employed to
capture spatiotemporal correlations and improve imputation
performance. We use an alternating proximal gradient method
with guaranteed convergence to address the proposed model.
Numerical experiments show that our proposal outperforms
matrix-based and tensor-based baselines on real-world traffic
datasets in various missing scenarios.

Index Terms—Traffic data imputation, regularized Tucker
decomposition, spatiotemporal constraints, alternating proximal
gradient.

I. INTRODUCTION
Traffic data (TD) analysis is vital for road traffic control

with intelligent transportation systems (ITS) development and
application. For example, the road loop sensors record traffic
state, including traffic speed, flow, and occupancy rate; the
cars equipped with GPS (internet traffic data) record subjects’
movement from an origin to a destination, involving pair, time,
and day modes. Both of them contain helpful information for
traffic networks and route planning. Unfortunately, the missing
data problem is inevitable due to communication malfunctions,
transmission distortions, or adverse weather conditions [1].
Consequently, traffic data imputation (TDI) is unavoidable and
urgently required in ITS.

Many imputation methods have been proposed to deal with
the missing data problem, such as statistical-based methods
[2] and deep learning-based [3]. However, these methods
either need more interpretability or have low accuracy. Due
to spatiotemporal correlation and large-scale structure [4], [5],
low-rank tensor completion methods have been well devel-
oped. In particular, the low-rank tensor approximation (LRTA)
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model has been validated to be very effective in TDI [6],
[7]. Additionally, the LRTA model has successfully discovered
interpretable traffic patterns, as reported by Chen et al. in
2018 [1] and 2019 [8]. The primary idea behind TDI is to
characterize spatiotemporal correlations, as highlighted in the
previous studies [9], [10]. Therefore, combining low rankness
(long-term trends) and local correlations (short-term patterns)
in traffic data is crucial in solving the TDI problem.

A. Motivations

This paper aims to capture traffic patterns from partially
observed TDs via a factorization model and then use them to
estimate the missing value accurately. Because low rankness
provides long-term trends for the traffic data, the LRTA-based
optimization model (referred to as the Tucker decomposition
in this paper) with spatiotemporal regularization is used for
the TDI problem. The motivations of our proposed model are
three folds:

Firstly, the multidimensional array of TDs contains rich
information. For example, traffic speed data in adjacent sensors
show similar patterns and present temporal correlation prop-
erties [11], [12]. The traffic matrix imputation method is 2-
dimensional and cannot handle high missing rates or structure-
missing scenarios, ignoring the data’s multidimensional nature
[8], [13]. Hence, reshaping the original traffic data into a high-
order tensor to capture the traffic patterns is essential.

Secondly, it is challenging to minimize the tensor rank. On
the one hand, flattening the tensor into a matrix and minimiz-
ing the unfolding matrix nuclear norm is computationally time-
consuming. On the other hand, rank determination remains the
main challenge in using low-rank tensor decomposition models
for TDI.

In addition, most previous tensor-based imputation methods
only focused on the long-term trends and temporal patterns of
TD, which made handling high-level and structured missing
scenarios difficult. The Tucker decomposition model preserves
the multidimensional nature of the TD and extracts the hidden
patterns [14] in a subspace. Thus, Tucker decomposition com-
bined with spatiotemporal constraints in the subspace captures
the traffic long term and reflects the spatial and temporal
correlations for the TDI problem.

B. Contributions

Though low-rank tensor completion is a hot topic for TDI,
the problem is still open and needs to be better addressed.
One of the main challenges is developing a low-rank Tucker
model without a predefined rank that can accurately capture
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long-term trends. Considering the short-term patterns of the
TD, another challenge remains to encode the spatiotemporal
correlations and enhance the imputation performance.

This paper proposes an innovative enhanced low-rank
Tucker decomposition model called Spatiotemporal Regular-
ized Tucker Decomposition (STRTD) for the TDI problem.
We summarize the main contributions as follows:

1) To better capture long-term traffic trends, we transform
the matrix-based data into a 3rd-order tensor, which
provides richer spatial and temporal information.

2) We propose STRTD to characterize traffic patterns in
TDs. The proposed model promotes long-term trends
by contrasting the Tucker core tensor’s sparsity and
non-negative factor matrices without a predefined rank.
Additionally, STRTD employs manifold regularization
and temporal constraint to characterize the short-term
patterns and enhance the model performance.

3) The STRTD model is an additive, non-convex, non-
smooth optimization problem. We use the alternating
proximal gradient (APG) method to transform the ob-
jective function into multiple solvable subproblems and
iterate alternately to find the critical point.

4) We verify the importance of spatiotemporal constraints
in STRTD on two real-world TDs. A comprehensive
comparative study with baselines is also conducted to
demonstrate the effectiveness of STRTD. With the free-
hyperparameters tuning, we show that STRTD performs
better in real-world traffic imputation problems under
different types of missing scenarios.

We organize the rest of the paper as follows. Section II
discusses the related work on TDI. Section III introduces the
notations and defines the TDI problem. Section IV proposes
the spatiotemporal constraints and model framework. In Sec-
tion V, we present an algorithm that guarantees convergence.
We evaluate the performance of our proposal on extensive
experiments and compare them with some baseline approaches
in Section VI. The last section concludes this paper and
presents future work.

II. RELATED WORK

Numerous time series imputation methods have been devel-
oped in the last two decades, especially for TDI [15]. From the
model-building perspective, these methods can be divided into
machine- and low-rank learning-based. Because TD has spatial
similarity and temporal variation characteristics, many studies
have proven that the low rankness assumption combined with
the spatiotemporal information method performs better than
other existing methods for TDI [5], [10]. So, the low-rank
tensor learning methods for TDI are discussed in detail in the
following section.

A. Low rankness

The low-rank property, which depicts the inherent corre-
lations in real-world datasets, is an essential and significant
assumption in the completion problem. Candes et al. [16]
proposed the trace norm to estimate the missing matrix data
regarding low-rank minimization. Liu et al. [17] extended the

matrix case to the tensor and proposed a tensor nuclear norm
for the image inpainting problem. Ran et al. [18] applied the
low-rank tensor nuclear norm minimization method to recover
the spatiotemporal traffic flow.

To avoid using the computationally expensive singular value
decomposition (SVD) in unfolding matrix norm minimization,
Tan et al. [19] proposed a Tucker decomposition model based
on the truncated singular values of each factor matrix to
exploit the low rankness in TD. Furthermore, Yokota et al.
[20] showed that the rank increment strategy is sufficient when
a lower m-rank approximation initializes the tensor than its
target m-rank in Tucker-based completion applications.

A significant difference between these two approximation
methods is how they make decisions about low rankness.
Compared with rank minimization and its relaxation, on the
one hand, the low-rank decomposition model can preserve the
tensor structure and avoid the high-cost unfolding matrix SVD
[21]. On the other hand, nuclear norm minimization cannot
impose spatiotemporal constraints directly on traffic data [12].
The low-rank decomposition model is more appropriate for
the TDI task [9], [22], [23].

B. Factorization Model

Low-rank tensor decomposition, a high-order matrix fac-
torization extension, has received increasing attention in spa-
tiotemporal traffic data analysis. On the one hand, consid-
ering the sensory traffic matrix data, many papers applied
the spatiotemporal Hankel operator to capture the low-rank
structure by transforming the original incomplete matrix to
a 4th-order tensor [13], [24]. This transformer captures spa-
tiotemporal information in a data-driven manner. However,
it is time-consuming and parameter-sensitive. On the other
hand, many papers used tensor decomposition models for TDI.
For example, Tan et al. [4], [19] proposed a Tucker-based
model to estimate missing traffic speeds, and the model results
experimentally verified the accuracy of traffic data completion
under Tucker-based decomposition. Chen et al. [22] proposed
a 3rd-order Bayesian augmented CP decomposition model
for traffic data analysis, combining domain knowledge to
enhance the imputation performance. However, estimating the
exact rank of CP decomposition in practice takes much work.
Furthermore, the spatiotemporal constraints can be directly
imposed on traffic data in the decomposition model [12]. So,
this paper focuses on the Tucker decomposition model for
spatiotemporal traffic data imputation.

C. Regularized Tucker Decomposition

Many studies have reported that using a low-rank Tucker de-
composition model is insufficient for cases where the missing
ratio is high [21], [25], [26]. One of the most popular methods
is to add regularization to the Tucker decomposition. Rose et
al. [9] proposed a unified low-rank tensor learning framework
considering local similarity by constructing a Laplacian regu-
larizer for multivariate data analysis.

Considering the spatiotemporal correlations in traffic data,
the constraint-based methods, such as smoothness [25], mani-
fold regularization [12], and temporal regularization [5], have
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TABLE I
NOTATIONS

X ,U, α A tensor, matrix and real value, respectively.
RI1×I2×···×IN
+ Set of N-th order non-negative array.

U ≥ 0 non-negative matrix U, i.e., uij ≥ 0, ∀i, j.

P+(U)
Operator yielding a non-negative matrix of
uij =max (uij , 0) ,∀i, j.

Sµ(x) Shrinkage operator with µ in component-wise.
Ω, Ω̄ Observed index set and its complement.
XΩ Observed entries supported on the observed index.
H Tensorization operator.

×n Mode-n product.
⊗,⊙ Kronecker product and Hadamard product.
∥∗∥F Frobenius norm.
X(n) Mode-n unfolding of tensor X .

tr Matrix trace operator.

been well studied. For example, Pan et al. [21] proposed
a sparse enhanced Tucker decomposition model to exploit
inherent long-term and short-term information in spatiotem-
poral traffic data imputation tasks. Besides, Zhang et al. [26]
introduced the Toeplitz matrix in the TT models to improve
the TD imputation performance. Most approaches require
predefined tensor ranks and are designed purely based on
spatial or temporal correlation, resulting in low performance
in data imputation, especially for structured missing scenarios.

Most papers still need to fully consider the long and short-
term patterns simultaneously, i.e., low rankness and the spa-
tiotemporal correlations. The proposed STRTD addresses these
properties in a tensor object by reshaping the traffic matrix
data in a 3rd-order spatiotemporal tensor form. Then, STRTD
exploits the long-term traffic trends using a low-rank Tucker
model without a predefined rank and captures the short-term
patterns with given spatiotemporal priors, including manifold
regularization and temporal constraint. Our experiment results
demonstrate that STRTD performs better in two real-world
TDs.

III. PRELIMINARIES

We review some related concepts of Tucker decomposition
as follows and present all notations used in this paper in Tab. I.
Please refer to [6] for more information on the preliminaries.

A. Notations

A tensor is a multidimensional array where the order of
the tensor is the number of dimensions, also called the mode.
Throughout this paper, we use calligraphy font for tensors,
such as X ∈ RI1×I2×···×IN , whose element is denoted as
xi1,i2,··· ,in . The bold uppercase letters for matrices, such
as U ∈ RI1×I2 , bold lowercase letters for vectors, such as
a ∈ RI1 , and lower case for scalars, such as α, β.

We denote the mode-n unfolding (i.e., matricization) of an
N -order tensor X by X(n) ∈ RIn×

∏
j ̸=n Ij . Based on the

matrix Kronecker product ⊗, we can represent the Tucker de-
composition X = G×N

n=1Un by X(n) = UnG(n)V
T
n , Vn =

(UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1) and the superscript
‘T’ represent matrix transpose. We can verify that vec(X ) =
(UN ⊗ · · · ⊗Un ⊗ · · · ⊗U1) vec(G) = ⊗1

n=NUnvec(G).

Finally, for a given tensor X ∈ RI1×I2×···×IN and observed
index set Ω, we define XΩ as a projector that keeps the nonzero
terms and leaves the other values as zero values, i.e.,

XΩ :=

{
xi1i2...in , if (i1, i2, . . . , in) ∈ Ω
0, otherwise.

B. Problem Definition

TD is typically collected from M sensors over J days with
I time points. The missing multivariate time series is denoted
as YΩ ∈ RM×IJ with the observed index set Ω, as shown
in Fig. 1(a). Chen et al. [5] showed that a low-rank tensor
can effectively capture long-term trends in TD and estimate
the traffic matrix. Furthermore, the TD tends to be similar
along the nearby sensors and correlates at adjacent time points,
reflecting short-term patterns [27]. So, this paper introduces
the tensorization operator [20] H to stack one-day traffic
sensory data and reshape the TD into a 3rd-order tensor. Then,
an enhanced low-rank Tucker decomposition combined with
the spatiotemporal constraints model (STRTD) is proposed to
capture the long and short-term patterns in TD. Conversely,
the inverse operator Ŷ = H−1(X̂ ) converts the reconstructed
tensor into the original traffic matrix and then estimates the
missing values.

Fig. 1. The proposed STRTD framework for the TDI problem. (a) Matrix
representation for TD. (b) Low-rank Tucker imputation based on the 3rd-order
traffic tensor.

Mathematically, we illustrate the proposed framework by
minimizing the following objective function:

minimize
G;{Un}

α∥G∥1 + β g(Un)

s.t. X = G ×N
n=1 Un, Un ≥ 0, XΩ = H(YΩ),

(1)

g(·) is the user-defined spatiotemporal constraint, and α, β
are tradeoff parameters to compromise the low rankness and
regularization role. Under different missing scenarios, we
update X by the rule (2)

X̂ = XΩ + {Ĝ ×1 Û1 × · · · ×N ÛN}Ω̄. (2)

The main idea of our framework is to propose and study low-
rank Tucker approximation for traffic tensor and estimate the
traffic matrix by Ŷ = H−1(X̂ ).
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IV. PROPOSED MODEL

This section describes the formulation of TDI using spatial
and temporal constraints in a regularized low-rank Tucker
decomposition model. The proposed method involves the spar-
sity of the Tucker core tensor, non-negative factor matrices,
manifold regularization, and temporal constraint.

A. Spatiotemporal Constraints

As mentioned, TD often reflects short-term patterns along
the spatial and temporal modes. On the one hand, the similarity
between rows of the traffic matrix characterizes the spatial
pattern, and the difference operator models the temporal
variation [11]. On the other hand, the short-term patterns can
be captured by using factor priors in the subspace under Tucker
decomposition [28], [29]. In this paper, we address the spa-
tiotemporal correlations relying on the manifold regularization
and temporal constraint matrix on factor matrices, which leads
to better performance for the TDI problem.

1) Manifold regularization: deals with non-linear data di-
mension reduction [14], which is used to search the geometric
structure of the graph. Since the TD is in a low-dimensional
spatial subspace, the similarity between the two sensors also
exists in the spatial mode [12]. We first select p nearest
neighbors in traffic sensors and use the kernel weighting to
determine a similarity matrix, defined as (3)

wij = e−(∥yi−yj∥2)/σ2

, (3)

where yi and yj are the neighbor nodes along the spatial mode,
σ2 = 1 denotes the uniform divergence.

Given the matrix W ∈ RI1×I1 ≥ 0 for traffic spatial mode,
we can use (4), the manifold regularization term, to capture
the spatial similarity in the subspace.

I1∑
i=1

I1∑
j=1

wij ∥ui − uj∥22 = tr
(
UTLU

)
, L = D−W, (4)

where ui is the column vector of UT, D ∈ RI1×I1 is a
diagonal matrix and dii =

∑I1
j=1 wij , i = 1, . . . , I1.

2) Temporal constraint: it is to capture the correlations
between adjacent time points in the time dimensional [12].
Considering the non-stationary in the temporal dimension, the
original traffic data is often correlated at adjacent time points.
For adjacent j−1th and jth time points in traffic matrix Y, we
consider the Toeplitz operator T defined on the traffic tensor
X to capture temporal variation, i.e., ∥Y·j −Y·j−1∥2F =

∥X ×n T∥2F . Note that

∥X ×n T∥2F = ∥G ×1 U1 · · · ×n (TUn)×n+1 · · · ×N UN∥2F
=
∥∥(TUn)

(
G ×N

p=1,p̸=n Up

)∥∥2
F

≤ ∥TUn∥2F
∥∥G ×N

p=1,p̸=n Up

∥∥2
F

≤ const. ∥TUn∥2F .
(5)

Consequently, we use ∥TU∥2F to characterize the temporal
correlation of traffic tensor in our proposal.

B. Spatiotemporal Regularized Tucker Decomposition Model
Let X 0 ∈ RI1×I2×···×IN be the missing traffic tensor.

Based on the model (1) and the aforementioned spatiotemporal
constraints, we consider the following optimization problem

minimize
G;{Un};X

F(G, {Un},X )

≜ {1
2

∥∥X − G ×N
n=1 Un

∥∥2
F
+ α∥G∥1+

K∑
n=1

βn

2
tr
(
UT

nLnUn

)
+

N∑
n=K+1

βn

2
∥TnUn∥2F }

s.t. Un ∈ RIn×In
+ , n = 1, . . . , N and XΩ = X 0

Ω,
(6)

where α, βn are positive penalty parameters, K represents the
numbers of spatial modes, Ln captures the spatial similarity,
and Tn encodes the temporal variation. By imposing non-
negativity constraints on the factor matrix, the Tucker core
tensor becomes sparser [30] and leads to a more intuitive
explanation of traffic patterns [31]. We name the model in
(6) as the Spatiotemporal Regularized Tucker Decomposition
(STRTD) method, simultaneously exploiting the long and
short-term characteristics of sensory traffic matrix data.
Remark: The Tucker components’ constraint assures that our
proposal is well-defined. On the one hand, if all penalty
parameters and non-negative vanish, there are product com-
binations {λn+1} such that {λ1G, λ2U1, · · · , λn+1Un} does
not change the value of (6). Hence, the low-rank Tucker
approximation may not admit a solution. On the other hand,
the spatiotemporal constraints imply the gradients of (6) are
Lipschitz continuous and have bounded Lipschitz constant
under proximal linear operators (See Proposition 1 and Propo-
sition 2), which guarantee the solution set is nonempty.

V. SOLVING STRTD MODEL
To solve the complicated optimization problems (6), we use

the alternating proximal gradient (APG) method to transform
the objective function into multiple solvable subproblems and
iterate alternately to find the critical point. Furthermore, we
present the convergence results for our proposed STRTD
model.

A. Optimization for the STRTD Model
The STRTD is the regularized block multi-convex optimiza-

tion problem [32], where we can use the prox-linear operator
to solve that. The details are shown in the Appendix A.

Firstly, we transform the (6) in mode-n unfolding, and the
factor matrices subproblems are given as the following three
types.

• Basic non-negative matrix factorization.

minimize
Un≥0

ℓ(Un) =
1

2

∥∥X(n) −UnG(n)V
T
n

∥∥2
F

(7)
where Vn = ⊗1

p=N,p̸=nUp.
• Manifold regularization on factor matrix.

minimize
Un≥0

ℓ(Un) =
1

2

∥∥X(n) −UnG(n)V
T
n

∥∥2
F

+
βn

2
tr
(
UT

nLnUn

) (8)
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where Ln = Dn −Wn represents the Laplacian matrix.
• Temporal constraint on factor matrix.

minimize
Un≥0

ℓ(Un) =
1

2

∥∥X(n) −UnG(n)V
T
n

∥∥2
F

+
βn

2
∥TnUn∥2F

(9)

where Tn is a self-defined temporal constraint matrix.
Proposition 1: Subproblems (7) - (9) are differentiable and
convex. The gradients ∇Un

ℓ(Un) are both Lipschitz contin-
uous with the following Lipschitz constant.

LUn =


∥∥∥G(n)V

T
nVGT

(n)

∥∥∥
2
+ βn ∥Ln∥2 , Manifold∥∥∥G(n)V

T
nVGT

(n)

∥∥∥
2
+ βn

∥∥TT
nTn

∥∥
2
, Temporal∥∥∥G(n)V

T
nVGT

(n)

∥∥∥
2
, otherwise.

Then, (10) presents the prox-linear operator to solve factor
matrices subproblems. The appendix contains the detailed
proof of Proposition 1 and obtains updated rule (14).

Ûn = argmin
Un≥0

〈
∇Un

ℓ(Ũn),Un − Ũn

〉
+
LUn

2
∥Un−Ũn∥2F ,

(10)
where Ũn denotes the extrapolated point.

Secondly, we update the subproblem G using the vectoriza-
tion optimization problem (11)

minimize
G

1

2

∥∥vec(X )−⊗1
n=NUnvec(G)

∥∥2
F
+ α∥vec(G)∥1

= f(G) + α∥vec(G)∥1.
(11)

Proposition 2: ∇Gf(G) is Lipschitz continuous with the
bounded Lipschitz constant LG =

∥∥⊗1
n=NU⊤

nUn

∥∥
2

=∏N
n=1

∥∥UT
nUn

∥∥
2
.

Guided by Proposition 2, we denote the core tensor prox-
linear function as (12)

Ĝ = argmin
G

〈
∇Gf(G̃),G − G̃

〉
+

LG

2
∥G − G̃∥2F + α∥G∥1,

(12)
where G̃ denotes the extrapolated point. Using the soft-
thresholding operator [33], the core tensor updating rule is
shown as (13), and the Appendix presents the detailed proof.

Thirdly, considering the spatiotemporal priors are con-
strained on factor matrices {Un}, our proposed algorithm
applies the order of G,U1,U2, · · · ,UN for algorithm design.
Suppose the current iteration is k-th step, we update the core
tensor Gk

Gk+1 = S α

Lk
G

(
G̃k − 1

Lk
G
∇Gf

(
G̃k
))

, (13)

where G̃k is given by (15) and Sµ(G) is a soft-thresholding
operator. Also, the factor matrices {Uk

n} is updated by

Uk+1
n = P+

(
Ũk

n −
1

Lk
Un

∇Un
ℓ
(
Ũk

n

))
, (14)

where Ũk
n is given by (16) and P+(U) is a mapping function

that projects the negative entries of U into zeros.

Technically, we propose an initial strategy where the {Un}
is generated randomly and then processed by normalization
[30]. We conclude that it can reduce the low-rank approx-
imation errors in our experiments. Furthermore, we speed
up Algorithm 1 with (15) and (16), which is updated by a
parameterized iterative shrinkage-thresholding scheme [34],

given by tk =
0.8+
√

4(tk−1)2+0.8

2 , t0 = 1.

G̃k = Gk + ωk

(
Gk − Gk−1

)
, for k ≥ 1. (15)

Ũk
n = Uk

n + ωk

(
Uk

n −Uk−1
n

)
, for k ≥ 1. (16)

ωk = min{ t
k−1 − 1

tk
, 0.999

√
Lk−1
G
Lk
G

(or

√
Lk−1
U

Lk
U

)}, (17)

Furthermore, we use the control rule [30] to re-update tensor
X k at the end of iteration k

X k+1
Ω = X 0

Ω + γ(X k
Ω −Zk

Ω), X k+1
Ω̄ = Zk

Ω̄, (18)

where Zk = Gk×N
n=1U

k
n, Ω̄ is the complement set of Ω, and

0 ≤ γ ≤ 1 is a user defined hyper-parameter. We ensure that
the value of F

(
Gk, {Uk

n}
)

decreases before re-updating the
G̃, {Ũn} and calculate the complete tensor X̂ = X 0

Ω + Zk
Ω̄

as the imputed result when (19) is satisfied.∥∥Ω⊙ (Zk −X 0)
∥∥
F

∥∥Ω⊙X 0
∥∥−1

F
< tol, for some k. (19)

Algorithm 1 APG-based solver for the STRTD model

1: Input: Missing traffic tensor X 0 ∈ RI1×I2×···×IN
+ , Ω con-

taining indices of observed entries, and the parameters
α ≥ 0, βn ≥ 0, to = 1e−4, and K = 300.

2: Output: Reconstructed tensor X̂ .
3: construct positive semi-definite similarity matrix Wn and

temporal constraint matrix Tn;
4: initialize G0,U0

n ∈ RIn×In
+ (1 ≤ n ≤ N );

5: for k = 1 to K do
6: Optimize G according to (13);
7: for n = 1 to N do
8: Optimize Un using (14);
9: end for

10: Update Zk using (18);
11: Whenever F

(
Gk,Uk

)
< F

(
Gk−1,Uk−1

)
, we re-update

G̃, {Ũn} using (15) and (16) until stopping conditions
(19) are satisfied.

12: end for
13: return X̂Ω = X 0

Ω, X̂Ω̄ = Zk
Ω̄.

Algorithm 1 is an APG-based updating procedure with
closed-form solutions for the proposed (6) problem, which
improves the algorithm’s efficiency.

B. Convergence Analysis

Since the STRTD model is a non-convex problem, we
demonstrate the convergence properties of the algorithm using
cyclic block coordinate descent [32]. The detailed analysis is
shown in Appendix B.
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Theorem 1. Let Θk = {Gk, {Uk
n}} be the sequence generated

by Algorithm 1, then we assure that Θk converges to a critical
point Θ̂ = {Ĝ, {Ûn}}.

The proof of Theorem 1 is based on the results given
by [33]. For simplicity, we give a proof framework here
and omit the details. Firstly, we establish a square summable
result, i.e.,

∑∞
k=1

∥∥Θk−1 −Θk
∥∥2
F
<∞. Next, we can prove

Θ̂ is a stationary point by verifying the first-order optimality
conditions. Finally, the Kurdyka–Lojasiewicz (KL) inequality
of F guarantees that Θk converges globally to a critical point.

C. Computational Complexity Analysis

Throughout this section, we denote the input tensor as
X ∈ RI1×...×IN and the core tensor as G ∈ RI1×...×IN . Con-
sidering the proposed Algorithm 1, gradient computing is the
most time-consuming. Moreover, Lipschitz constants calcu-
lation is negligible since the components can be obtained
during the gradients’ computation. Assuming that the STRTD
converges in the K iterations, we can roughly summarize
the per-iteration complexity time complexity of the STRTD
algorithm as

O

(N + 1)

N∑
n=1

(
n∏

i=1

Ii

) N∏
j=n

Ij

 , (20)

where the per-iteration cost is relevant to the tensor sizes∏n
i=1 Ii, the proposed algorithm is theoretically efficient [33].

The detailed analysis is shown in Appendix C.

VI. EXPERIMENTS

In this section, we conduct experiments on two TDs to
compare STRTD with baselines in different missing scenarios.
All experiments are performed using MATLAB 2023a on
a Windows 10 64-bit operating system on a workstation
equipped with an Intel(R) Xeon(R) W-2123 CPU with 3.60
GHz and 64 GB RAM. Note that our Matlab codes are
available on request.

A. Traffic Datasets

We use the following two TDs for our experiment and form
them as 3rd-order tensors for traffic data imputation problems.

• (G): Guangzhou urban traffic speed dataset. The original
data is of size 214 × 8784 in the form of a multivariate
time series matrix. We select seven days for our model
training and reshape it into 3-rd order tensor of size 214×
144× 7, i.e., (sensors, time, day).

• (A): Internet traffic flow dataset in Abilene. Dataset A
includes 11 OD pairs, recording traffic flow every 5
minutes from December 8, 2003, to December 14, 2003.
We consider a 3rd-order tensor of size 121 × 288 × 7,
where the first dimension corresponds to 121 OD pairs,
the second to the time interval, and the last to 7 days.

To analyze these datasets’ spatiotemporal characteristics, we
first calculate the spatial correlations [4] between various pairs
of rows in traffic matrix Y. Fig. 2 (a) depicts the cumulative
distribution function (CDF) of the correlation coefficient. It

indicates that over 50% of the sensors in two TDs exhibit
strong correlations. This observation reveals that the sensor
network in datasets G and A has strong spatial correlations.
Fig. 2(b) shows the CDF of the traffic data with the increment
rates (IRs) [12]. More than 50% of the data’s IRs vary between
0.1 and 2, indicating temporal variations in the data. These
results imply that the proposed spatiotemporal constraints are
essential for our TDI problems.

Fig. 2. Interpretation of the spatiotemporal characteristics in our TDs.

B. Experimental Settings

1) Missing scenario: For a thorough verification of the
STRTD to TDI problem, we take into account three missing
scenarios, i.e., random missing (RM), no-random missing
(NM), and black-out missing (BM). Generally, RM means that
missing data is uniformly distributed, and NM is conducted by
randomly selecting sensors and discarding consecutive hours.
At the same time, BM refers to all sensors not working for a
certain period of time. According to the mechanisms, we mask
the observed index set Ω and use the partial observations for
the model training.

2) Baseline models: For comparison, we select six state-
of-the-art spatiotemporal traffic data imputation methods: stTT
[26], LATC [5], LR-SETD [21], BGCP [22], tSVD [35] and
TAS-LR [12], to demonstrate the robustness and efficiency of
our proposal. The baselines are shown in Tab. II, in which the
TAS-LR is a matrix-based approach, LATC is the matricization
method, and others are the tensor decomposition method.

TABLE II
COMPARISON OF BASELINE MODELS

Baselines Spatiotemporal constraints StructuresLow rankness Spatial Temporal

STRTD ✓ ✓ ✓ 3rd tensor
stTT [26] ✓ ✓ ✓ 3rd tensor
LATC [5] ✓ ✓ 3rd tensor

LR-SETD [21] ✓ ✓ 3rd tensor
BGCP [22] ✓ ✓ 3rd tensor
tSVD [35] ✓ 3rd tensor

TAS-LR [12] ✓ ✓ ✓ Matrix
✓denotes the mentioned method has considered the constraint.

3) Model performance: To measure the imputation per-
formance, we adopt two criteria, including mean absolute
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percentage error (MAPE) and normalized mean absolute error
(NMAE):

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100,

NMAE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|

(21)

where yi and ŷi are actual values and imputed values, respec-
tively.

C. Implementation Details

Parameters setting: Two parameters α and βn need to be
tuned in our STRTD model. Hyperparameter α adjusts the
strength of the sparsity term, i.e., the low-rank tensor approxi-
mation, and βn characterizes spatiotemporal regularization. In
all our experiments, we easily set the core tensor size to be
the same as the traffic tensor and set α = 1, which does not
need to predefine the Tucker ranks. We calculate the maximum
SVD value of spatiotemporal constraint matrices to deliver βn,
i.e., βn = 1

2∗0.1∗σ(L or TTT) . Additionally, we evaluate the
performance of different strategies to varying sample ratios
(SRs) under RM scenarios, with SRs ranging from 0.9 to 0.1,
0.07, and 0.05. Fig. 3 shows that setting the parameter γ to
0.2 reduces imputation error in high-level missing scenarios.
In addition, the proposed initialization strategy reduces low-
rank approximation errors. For better model comparison, the
termination condition for all experiments is set to (19), where
tol = 10−4 and the maximum number of iterations is 300. Fur-
thermore, the parameters of baselines are optimally assigned
or automatically chosen as described in the reference papers.

Fig. 3. Model performance over strategies for G (left) and A (right),
respectively.

Ablation studies: To illustrate TDs’ long and short-term
patterns, we first discuss the tensor structure in our STRTD
model under different RM ratios. In our analysis, we denote
the mentioned 3rd-order traffic tensor as M1. Following the
method proposed in [13], we reshape G into a 10×205×7×
1002 tensor and A into a 11×11×288×7 tensor, represented
by M2. Fig. 5 (a)-(b) shows the model performance; it can be
seen that the 3rd-order tensor structure covers richer spatial
and temporal information. To further verify the validity of
the spatiotemporal regularizations, we discuss the effect of
the spatial and temporal constraints of STRTD. Fig. 5(c)-
(d) compares the influence of spatiotemporal constraints for
datasets G and A, respectively. We can observe that spatial and
temporal regularizations enhance the traffic data imputation

performance. However, the temporal constraint plays a more
critical role compared to the spatial constraint.

Fig. 4. The curves of the RSE values relative to the iterations under the RM
scenarios on G dataset for different SRs.

Convergence behaviors: We have proven that Algorithm 1
sequences converge to a critical point theoretically in Theorem
1. Here, Fig. 4 (left) shows the curves of the relative square
error (RSE) values versus the iteration number of the proposed
STRTD on the G dataset to show the numerical convergence.
Along with the iteration increases, the RSE decreases and
stabilizes after approximately 200 iterations, indicating the
numerical convergence of the algorithm. Furthermore, we test
the RSE values of RM under SR = 0.05%, Fig. 4 (right)
shows that the parameterized updating rule can speed up the
convergence of Algorithm 1.

D. Results

This section will compare the STRTD method with other
baselines mentioned in Tab. III.

1) Overall performance among baseline models: The ab-
lation studies show that spatial and temporal constraints can
enhance the model performance for the TDI problem. To show
the superiority of the STRTD, Tab. III shows the overall
performance of baseline models on the datasets G and A
under various missing scenarios. The best error indicator
values are bolded. From these quantitative comparisons, the
low-rank tensor imputation methods outperform matrix-based
ones. In addition, the STRTD can impute the TDs with
fewer observed data more accurately. Specifically speaking,
the proposed method achieves the lowest MAPE and NMAE
values. Compared with other baselines, the STRTD model
performs better for each RM case. Reconstructing the NM
and BM scenarios is more challenging than the RM scenarios,
but the proposed method consistently performs well. These
results show that combining short-term traffic patterns with
long-term trends benefits STRTD by utilizing low-rankness
and spatiotemporal constraints.

We calculate the MAPE values for the G and NMAE values
for the A under different RM scenarios (SR changes from
0.90 to 0.05) in Fig. 6. The results show that STRTD has the
lowest value, even for the highly missing. Especially when the
missing rate is 95%, imputing with MAPE and NMAE values
results in improvements higher than 3%.

2) Imputation examples with different missing scenarios:
Here, we show some STRTD imputation examples with dif-
ferent missing scenarios on the Guangzhou (G) dataset. For
the RM scenario, Fig. 7 shows the same signal trends under
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Fig. 5. Results of the ablation studies. (a)-(b) Interpretation of the multidimensionality of dataset G and A. (c)-(d) Illustration of the influence of spatiotemporal
constraints for G and A, respectively.

TABLE III
PERFORMANCE COMPARISON OF STRTD AND OTHER BASELINES FOR RM, NM, AND BM SCENARIOS

Data Missing scenario STRTD tSVD LATC LR-SETD BGCP stTT TAS-LR

RM-30% 2.19 2.23 5.94 5.32 6.91 10.96 10.12
RM-70% 6.08 6.58 6.93 6.89 7.88 10.95 11.62
RM-90% 9.90 11.17 10.05 10.44 10.35 11.28 15.11

G RM-95% 12.19 13.55 12.60 16.22 12.25 12.84 17.69
(MAPE) NM-30% 10.81 12.93 74.98 13.48 15.62 11.88 12.31

NM-70% 12.48 50.19 88.01 21.24 27.31 15.15 19.14
NM-90% 18.77 85.51 87.66 57.33 32.73 21.97 52.01
BM-30% 13.56 52.01 45.66 28.02 40.35 34.31 32.65

RM-30% 0.0497 0.0501 0.1229 0.1159 0.1196 0.2120 0.3092
RM-70% 0.1435 0.1753 0.1488 0.1935 0.1527 0.2251 0.3178
RM-90% 0.2175 0.2274 0.2328 0.2356 0.2361 0.3764 0.3407

A RM-95% 0.2532 0.2752 0.4809 0.2601 0.3636 0.5124 0.3576
(NMAE) NM-30% 0.2777 - - 0.6093 - 0.2869 0.3214

NM-70% 0.4067 - - 0.7401 - 0.3725 0.5791
NM-90% 0.7241 - - 0.8013 - 0.7303 0.8176
BM-30% 0.4418 - - 0.2509 - 0.3011 0.8417

Time (Seconds) 31 17 140 35 1922 14 75
The best results are highlighted in bold fonts, and - denotes that the algorithm is not applicable.

Fig. 6. MAPE and NMAE values for different sample ratios under RM scenarios for datasets G (left) and A (right), respectively.

different SRs (see the number of purple dots), indicating that
the STRTD can accurately impute partial observations. Also,
the residuals in Fig. 8 reveal that the STRTD can successfully
reconstruct the TD precisely, even for the extreme case (i.e.,
90% RM). To further validate the superiority of our STRTD,
we plot the structural missing scenarios (NM and BM) result
in Fig. 9 and Fig. 10. In this case, accurate imputation and
traffic trend learning are achievable even in severe missing
scenarios with STRTD.

VII. CONCLUSION
Traffic data imputation (TDI) is inevitable and challenging

in data-driven intelligent transportation systems (ITS). This

paper treats the TDI as a low-rank Tucker decomposition
problem. The proposed STRTD exploits the long-term trends
using a low-rank Tucker model and captures the short-term
patterns with manifold regularization and temporal constraint.
Through extensive experiments on two real-world TDs, our
results show that the proposed STRTD beats other baselines
for TDI with different RM scenarios and performs well on
NM and BM missing scenarios (see Tab. III and Fig. 6).

There are three potential prospects for future work. First,
our proposal ignores the exact rank and uses the sparse
core tensor and non-negative factor matrix terms to promote
low rankness. A potential approach is to use another low-



JOURNAL OF LATEX CLASS FILES, VOL. 01, NO. 1, MAR 2023 9

Fig. 7. Results of RM scenario on G dataset. This example corresponds to the 81st sensor and the 4th day of the dataset. Purple dots indicate the partially
observed data, and red curves indicate the imputed values.

Fig. 8. Imputed values by STRTD on G dataset under RM scenario with 90% missing. Note that the red area (residual area) is only used to express the
estimation performance, which does not represent the cumulative residual.

Fig. 9. Imputed values by STRTD on G dataset under NM scenario with 70% missing. The gray rectangles indicate the missing area.

Fig. 10. The visualization of STRTD on G dataset under BM scenario with 30% missing. The middle heat map is our STRTD results.

rank tensor measure, such as multiplying the factor matrix
rank to encode the Tucker rank [36]. Second, the current
framework suffers a high computational cost for large-scale
matrix multiplication calculations. One can consider the fast
Fourier transform to address this issue [37]. Third, in addition

to TDI, we can use the STRTD for spatiotemporal traffic data
forecasting even with the missing observations [38]. Also, the
proposed spatiotemporal traffic data modeling frameworks can
be considered for urban traffic pattern discovery [27].
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APPENDIX A
APG-BASED ALGORITHM FOR THE STRTD

We first denote the STRTD optimization problem as a class
of regularized block multi-convex optimization problems:

minimize
{xn}

ℓ ({xn}) +
N∑

n=1

βnfn (xn) ,

where fn (xn) is the given constraint. We consider the APG-
based prox-linear operator to update every xn by solving a
relaxed subproblem with a separable quadratic objective:

xk
n = argmin

xn

{
〈
g̃k,xn − x̃k−1

n

〉
+

Lk−1
xn

2

∥∥xn − x̃k−1
n

∥∥2
F

+ βnrn (xn)},
(22)

where x̃k−1
n denotes an extrapolated point and update through

x̃k−1
n = xk−1

n + ωk−1

(
xk−1
n − xk−2

n

)
, for k ≥ 1

ωk−1 =
tk−2 − 1

tk−1
, tk−1 =

p+
√
r(tk−2)2 + q

2
,

(23)

where p, q ∈ [0, 1], r ∈ [0, 4], and g̃k = ∇xnℓ
(
x̃k−1
n

)
is the

partial gradient of objective function ℓ. Guided by [34], we
set p = q = 0.8, r = 4, and the updating rule (22) under these
sequences has O

(
1/k2

)
convergence rate.

Then, we provide detailed proof of Proposition 1 and
Proposition 2, followed by an explanation of the closed-form
updating rule.

Proof of Proposition 1. Obviously, the Frobenius norm and
matrix trace are differentiable functions. It remains to prove
the convex property of ℓ and the Lipschitz continuous prop-
erty of ∇Unℓ. Let Φ = 1

2

∥∥X(n) −UnG(n)V
T
n

∥∥2
F

and
g = tr

(
UT

nLnUn

)
or ∥TnUn∥2F, we have the gradient of

ℓ(Un) = Φ(Un) +
βn

2 Φ(Un)

∇Un
ℓ(Un) = UnG

n
VGn

V
T−X(n)G

n
V

T+∇Un
g(Un). (24)

where Gn
V = G(n)V

T
n and Vn =

(
⊗1

p ̸=nUp

)
.

On the one hand, the Hessian matrix of ℓ(Un) is given by

∇2
Un

ℓ(Un) =


Gn

VGn
V

T + βnLn, Manifold
Gn

VGn
V

T + βnT
T
nTn, Temporal

Gn
VGn

V
T, otherwise

(25)
As we know, the functions Gn

VGn
V

T, Ln, and TnT
T
n are both

positive semi-definite, which shows that ℓ(Un) is convex.
On the other hand, we need the Lipschitz constant of ∇Unℓ.

Since ℓ(Un) is a linear combination of Φ(Un) and g(Un),
the Lipschitz constant of ∇Un

ℓ can be calculated as a linear

combination of the Lipschitz constants of the ∇UnΦ and
∇Ung. Such as, taken g(Un) =

βn

2 tr
(
UT

nLnUn

)
∇Un

ℓ(Un) = UnG
n
VGn

V
T −X(n)G

n
V

T + βnLnUn. (26)

For any two matrices U1
n,U

2
n, we have∥∥∇Un

ℓ(U1
n)−∇Un

ℓ(U2
n)
∥∥2
F

=
∥∥∥(U1

n −U2
n

)
Gn

VGn
V

T − βnLn

(
U1

n −U2
n

)∥∥∥2
F

≤
∥∥∥(U1

n −U2
n

)
Gn

VGn
V

T
∥∥∥2
F
+
∥∥βnLn

(
U1

n −U2
n

)∥∥2
F
.

(27)
So, we only need to calculate the Lipschitz constant of the
composite gradient ∇Un

ℓ separately. More specifically,∥∥∥(U1
n −U2

n

)
Gn

VGn
V

T
∥∥∥2
F

= tr
(
Gn

VGn
V

T
(
U1

n −U2
n

)T (
U1

n −U2
n

)
Gn

VGn
V

T
)

≤
∥∥∥Gn

VGn
V

T
∥∥∥2
2

∥∥U1
n −U2

n

∥∥2
F

(28)
and ∥∥βnLn

(
U1

n −U2
n

)∥∥2
F

= tr
(
βnLn

T
(
U1

n −U2
n

)T (
U1

n −U2
n

)
βnLn

)
≤ βn ∥Ln∥22

∥∥U1
n −U2

n

∥∥2
F

(29)

where ∥GV∥2 and ∥Ln∥2 are the spectral norm with respect
to GV and Ln. Therefore, ∇Un

ℓ(Un) is Lipschitz continuous
and the Lipstchitz constant LUn is bounded. Furthermore, the
gradient of temporal regularization satisfies∥∥βnT

T
nTn

(
U1

n −U2
n

)∥∥2
F
≤ βn

∥∥TT
nTn

∥∥2
2

∥∥U1
n −U2

n

∥∥2
F

(30)
Combine with the above Equations, we define the Lipschitz

constant LUn as

LUn
=


∥∥∥Gn

VGn
V

T
∥∥∥
2
+ βn ∥Ln∥2 , Manifold∥∥∥Gn

VGn
V

T
∥∥∥
2
+ βn

∥∥TT
nTn

∥∥
2
, Temporal∥∥∥Gn

VGn
V

T
∥∥∥
2
, otherwise

(31)
This completes the proof.

To solve (10), we take the derivative and set it to zeros, then
we have

Un ←− P+

(
Ũn −

1

LUn

∇Un
ℓ
(
Ũn

))
, (32)

where P+(U) is the function that projects the negative entries
of U into zeros and Ũn is updated by

Ũk
n = Uk

n + ωk

(
Uk

n −Uk−1
n

)
, for k ≥ 1.

with the updated step size ωk using (17).

Proof of Proposition 2. As in Proposition 1, verifying the
convex and Lipschitz continuous properties is straightforward.
For the vectorization form, we have

vec (∇Gf(G)) =
(
⊗1

n=NUT
nUn

)
vec(G)

−
(
⊗1

n=NUT
n

)
vec(X ),

(33)
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Then, the Hessian matrix vec
(
∇2

Gf(G)
)

= ⊗1
n=NUT

nUn,
which is positive semi-definite and assures f(G) is convex.
Furthermore, we use the properties of Kronecker product to
calculate ∇Gf(G) as follows

∇Gf(G) = G ×1 U
T
1 U1 × · · · ×N UT

NUN

−X ×1 U
T
1 × · · · ×N UT

N .
(34)

For any given G1 and G2, we have

∥vec (∇Gf(G1))− vec (∇Gf(G2))∥F
=
∥∥⊗1

n=NUT
nUn (vec(G1)− vec(G2))

∥∥
F

≤
∥∥⊗1

n=NUT
nUn

∥∥
2
∥vec(G1)− vec(G2)∥F

=
∏N

n=1

∥∥UT
nUn

∥∥
2
∥vec(G1)− vec(G2)∥F .

(35)

So, the Lipschitz constant of ∇Gf(G) is LG =∏N
n=1

∥∥UT
nUn

∥∥
2
. This completes the proof.

Based on the results given by Proposition 2, we can use the
soft thresholding operator [33] to solve the composite model
(12), and the result is

Ĝ = T f,g
LG

(G) = S α
LG

(
G̃ − 1

LG
∇Gf

(
G̃
))

(36)

where Sζ(·) is ‘shrinkage’ operator defining component-wisely
as

Sµ(x) = sign(x) ·max(0, |x| − µ).

and G̃ is updated by

G̃k = Gk + ωk

(
Gk − Gk−1

)
, for k ≥ 1.

with the updated step size (17).

APPENDIX B
CONVERGENCE ANALYSIS

We provide convergence proof for the proposed algorithm,
which is given in the following three steps:
Square summable: We express (6) as F(Θ) = F1(Θ)+F2(Θ),
Θ = {{Un},G}, where F1 is either function ℓ or f and F2 is
either the l1 norm or a non-negative projector. The prox-linear
updating rule indicates

Θ̂ = argmin
Θ

〈
∇ΘF1(Θ̃),Θ− Θ̃

〉
+

LΘ

2
∥Θ− Θ̃∥2F +F2(Θ),

(37)
where Θ̃ is the extrapolation point. For any Θk = {{Uk

n},Gk}
generated by Algorithm 1, it is worth noting that Algorithm 1
takes Lk−1

Θ as the Lipschitz constant of ∇ΘF1(Θ
k), the (38)

is satisfied.

F1(Θ
k) ≤ F1(Θ

k−1) +
〈
∇ΘF1(Θ

k−1),Θk −Θk−1
〉

+
LΘk−1

2
∥Θk −Θk−1∥2F , for anyk = 1, · · · ,K.

(38)
Considering the convexity of F1,F2, then the proximal gradi-
ent inequality assures that

F(Θ)−F(Θ̂) ≥ LΘ

2
∥Θ̂−Θ̃∥2F+LΘ

〈
Θ̃−Θ, Θ̂− Θ̃

〉
. (39)

Based on the results given by Proposition 1 and Proposi-
tion 2, we have ∇ΘF1(Θ) is Lipschitz continuous, which

has bounded Lipschitz constant. Then for three successive
Θk−2,Θk−1,Θk given by the updated step (17), we have

F(Θk−1)− F(Θk)

≥
Lk−1
Θ

2
∥Θk − Θ̃k−1∥2F + Lk−1

Θ

〈
Θ̃k−1 −Θk−1,Θk − Θ̃k−1

〉
≥

Lk−1
Θ

2
∥Θk−1 −Θk∥2F −

Lk−2
Θ δω
2
∥Θk−2 −Θk−1∥2F , δω<1.

(40)
Summing the above inequality over k from 1 to K, we have

F(Θ0)− F(ΘK) ≥
K∑

k=1

const. ∥Θk−1 −Θk∥2F . (41)

Letting K →∞ and observing F is lower bounded, we have
∞∑
k=1

∥∥Θk−1 −Θk
∥∥2
F
<∞. (42)

Subsequence convergence: Recall the prox-linear operator
mentioned in (37), which is a block multi-convex minimization
problem. Depending on the square summable property, we set
Θ̂ as a limit point of Θ. For the given X , we have

Ĝ = argmin
G

〈
∇Gf(G̃, {Ûn}),G − G̃

〉
+

L̃G

2
∥G − G̃∥2F + α∥vec(G)∥1.

(43)

Letting G̃ → Ĝ, we have L̃G → L̂G and get〈
∇Gf(G) + αPG ,G − Ĝ

〉
≥ 0, for some PG ∈ ∂∥vec(G)∥1.

(44)
Hence, Ĝ satisfies the first-order optimality condition of (12).
Similarly, we have for all Un that〈
∇Un

ℓ(Un) + PUn
,Un − Ûn

〉
≥ 0, for all Un ≥ 0. (45)

The above equations give the first-order optimality conditions
of (6), and then subsequence Θk = {{Uk

n},Gk} converges to
critical point Θ̂. Furthermore, at the kth iteration of Algorithm
1, we performs re-update when F (Θk)< F (Θk−1), which
assures the objective F nonincreasing. Hence, the convergence
result still holds with an extra updated (18).
Global convergence: It is straightforward to verify ℓ(·), ∥ ·
∥,P+(·) are semi-algebraic functions and then demonstrate
that F satisfies the Kurdyka–Lojasiewicz (KL) property [39]
at Θ̂, namely, there exists µ, ρ > 0, η ∈ [0, 1], and a neighbor-
hood B(Θ̂, ρ) =

{
Θ : ∥Θ− Θ̂∥2F ≤ ρ

}
such that

∥F(Θ)−F(Θ̂)∥η ≤ µ · dist(0, ∂F(Θ)), for all Θ ∈ B(Θ̂, ρ).
(46)

Combining the subsequence convergence and KL property,
the sequence Θk converges globally to a critical point Θ̂ of
equation (6).

APPENDIX C
COMPUTATIONAL COMPLEXITY ANALYSIS

The Tucker decomposition algorithms compute the huge
matrix multiplication and suffer from very high computational
complexity; we combine the low-rank approximation with
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population Tucker decomposition strategies to reduce the
computational complexity [40]. Here, we analyze the com-
putational complexity of the proposed STRTD. Suppose that
X ∈ RI1×...×IN and the core tensor G ∈ RI1×...×IN , we have
the basic computational complexity: the computational cost of
UT

nUn is O(I3n) and the mode-n product with the matrix Un

of tensor G is O(
∑N

n=1

∏n
i=1 Ii

∏N
j=1 Ij). Furthermore, we

reformulate the Kronecker product in Gn
V = G(n)V

T
n but let

Y = G ×1 U1 · · · ×n−1 Un−1 ×n+1 Un+1 · · · ×N UN ,

such that we have Gn
V = Y(n) and its computational cost is

O (Gn
V) = O

n−1∑
j=1

(
j∏

i=1

Ii

) N∏
i=j

Ii

+

O

( n∏
i=1

Ii

)
N∑

j=n+1

(
j∏

i=n+1

Ii

) N∏
i=j

Ii


≤ O

 N∑
n=1

(
n∏

i=1

Ii

) N∏
j=n

Ij


(47)

Also, we conclude that the computational cost of tensor
unfolding, soft-thresholding operator, and projection to non-
negative is negligible compared to gradient computing.

Considering the proposed APG-based optimization for core
tensor “shrinkage”, the computation of ∇Gf (G) requires

O

 N∑
n=1

I3n +

N∑
n=1

In

N∏
i=1

Ii +

N∑
n=1

(
n∏

i=1

Ii

) N∏
j=n

Ij

 .

(48)
where the first part comes from the computation of all UT

nUn,
and the second and third parts are respectively, from the
computations of the first and second terms in (34).

Similarly, we use (47) to calculate the computational com-
plexity of ∇Un

ℓ(Un) and requires

O

(
In

(
n∏

i=1

Ii

)
+ I3n

)
+O

(
n∏

i=1

Ii

)
+O

(
I3n
)
+O (Gn

V) .

(49)
The first three parts are from the computations of the three
terms in (24), and (49) is dominated by the last part. So, the
computational cost of ∇Gf (G) and ∇Un

ℓ(Un) are

O

 N∑
n=1

(
n∏

i=1

Ii

) N∏
j=n

Ij

 . (50)
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